Part Number Hot Search : 
C847B 4K720 337M00 4K720 MPB027 ESDA5 C847B CF5732KA
Product Description
Full Text Search
 

To Download STM32F091CCU6 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. october 2014 docid026284 rev 1 1/129 stm32f091xb stm32f091xc arm ? -based 32-bit mcu, up to 256 kb flash, can, 12 timers, adc, dac & comm. interfaces, 2.0 - 3.6v datasheet - production data features ? core: arm ? 32-bit cortex ? -m0 cpu, frequency up to 48 mhz ? memories ? 128 to 256 kbytes of flash memory ?32 kbytes of sram with hw parity ? crc calculation unit ? reset and power management ? digital & i/os supply: v dd = 2.0 v to 3.6 v ? analog supply: v dda = v dd to 3.6 v ? power-on/power down reset (por/pdr) ? programmable voltage detector (pvd) ? low power modes: sleep, stop, standby ?v bat supply for rtc and backup registers ? clock management ? 4 to 32 mhz crystal oscillator ? 32 khz oscillator for rtc with calibration ? internal 8 mhz rc with x6 pll option ? internal 40 khz rc oscillator ? internal 48 mhz oscillator with automatic trimming based on ext. synchronization ? up to 88 fast i/os ? all mappable on external interrupt vectors ? up to 69 i/os with 5v tolerant capability and 19 with independent supply v ddio2 ? 12-channel dma controller ? one 12-bit, 1.0 s adc (up to 16 channels) ? conversion range: 0 to 3.6 v ? separate analog supply: 2.4 v to 3.6 v ? one 12-bit d/a converter (with 2 channels) ? two fast low-power analog comparators with programmable input and output ? up to 24 capacitive sensing channels for touchkey, linear and rotary touch sensors ? calendar rtc with alarm and periodic wakeup from stop/standby ? 12 timers ? one 16-bit advanced-control timer for 6 channel pwm output ? one 32-bit and seven 16-bit timers, with up to 4 ic/oc, ocn, usable for ir control decoding or dac control ? independent and system watchdog timers ? systick timer ? communication interfaces ? two i 2 c interfaces supporting fast mode plus (1 mbit/s) with 20 ma current sink; one supporting smbus/pmbus and wakeup ? up to eight usarts supporting master synchronous spi and modem control; three with iso7816 interface, lin, irda, auto baud rate detection and wakeup feature ? two spis (18 mbit/s) with 4 to 16 programmable bit frames, and with i 2 s interface multiplexed ? can interface ? hdmi cec wakeup on header reception ? serial wire debug (swd) ? 96-bit unique id ? all packages ecopack ? 2 table 1. device summary reference part number stm32f091xb stm32f091cb, stm32f091rb, stm32f091vb stm32f091xc stm32f091cc, stm32f091rc, stm32f091vc lqfp100 14x14 mm lqfp64 10x10 mm lqfp48 7x7 mm ufqfpn48 7x7 mm &"'! ufbga100 7x7 mm ufbga64 5x5 mm wlcsp64 4.5x4.9 mm www.st.com
docid026284 rev 1 2/129 stm32f091xb stm32f091xc contents 4 contents 1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 arm ? -cortex ? -m0 core with embedded flash and sram . . . . . . . . . . . 13 3.2 memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 cyclic redundancy check calculation unit (crc) . . . . . . . . . . . . . . . . . . . 14 3.5 power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.1 power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.2 power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.3 voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.5.4 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.6 clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7 general-purpose inputs/outputs (gpios) . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.8 direct memory access controller (dma) . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9 interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9.1 nested vectored interrupt controller (nvic) . . . . . . . . . . . . . . . . . . . . . . 17 3.9.2 extended interrupt/event controller (exti) . . . . . . . . . . . . . . . . . . . . . . 17 3.10 analog to digital converter (adc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.1 temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.2 internal voltage reference (v refint ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.3 v bat battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11 digital-to-analog converter (dac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.12 comparators (comp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.13 touch sensing controller (tsc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.14 timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14.1 advanced-control timer (tim1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14.2 general-purpose timers (tim2..3, tim14..17) . . . . . . . . . . . . . . . . . . . . 23 3.14.3 basic timers tim6 and tim7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.4 independent watchdog (iwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.5 system window watchdog (wwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
contents stm32f091xb stm32f091xc 3/129 docid026284 rev 1 3.14.6 systick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.15 real-time clock (rtc) and backup registers . . . . . . . . . . . . . . . . . . . . . . 24 3.16 inter-integrated circuit interfaces (i 2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.17 universal synchronous/asynchronous receiver transmitters (usart) . . 26 3.18 serial peripheral interface (spi)/inter-integrated sound interfaces (i 2 s) . 27 3.19 high-definition multimedia interface (hdmi) - consumer electronics control (cec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.20 controller area network (can) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.21 clock recovery system (crs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.22 serial wire debug port (sw-dp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1 parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.1 minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.2 typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.3 typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.4 loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.5 pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.6 power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.7 current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.1 general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.2 operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 57 6.3.3 embedded reset and power control block characteristics . . . . . . . . . . . 57 6.3.4 embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3.5 supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3.6 wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3.7 external clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.8 internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.9 pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.10 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
docid026284 rev 1 4/129 stm32f091xb stm32f091xc contents 4 6.3.11 emc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.12 electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.13 i/o current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.14 i/o port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.15 nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.16 12-bit adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.17 dac electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.3.18 comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.19 temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.20 v bat monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.21 timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.22 communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7 package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.1 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.2 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.2.1 reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.2.2 selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 124 8 part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
docid026284 rev 1 5/129 stm32f091xb stm32f091xc list of tables 6 list of tables table 1. device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 table 2. stm32f091xb/xc family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . 11 table 3. temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 table 4. internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 table 5. capacitive sensing gpios available on stm32f091xb/xc devices . . . . . . . . . . . . . . . . . 20 table 6. no. of capacitive sensing channels available on stm32f091xb/xc devices. . . . . . . . . . . 21 table 7. timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 table 8. comparison of i2c analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 9. stm32f091xb/xc i 2 c implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 10. stm32f091xb/xc usart implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 table 11. stm32f091xb/xc spi/i2s implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 table 12. legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 table 13. stm32f091xb/xc pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 table 14. alternate functions selected through gpioa_afr registers for port a . . . . . . . . . . . . . . . 43 table 15. alternate functions selected through gpiob_afr registers for port b . . . . . . . . . . . . . . . 44 table 16. alternate functions selected through gpioc_afr registers for port c . . . . . . . . . . . . . . . 45 table 17. alternate functions selected through gpiod_afr registers for port d . . . . . . . . . . . . . . . 45 table 18. alternate functions selected through gpioe_afr registers for port e . . . . . . . . . . . . . . . 46 table 19. alternate functions selected through gpiof_afr registers for port f. . . . . . . . . . . . . . . . 46 table 20. stm32f091xb/xc peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . 48 table 21. voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 table 22. current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 23. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 24. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 25. operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 26. embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 27. programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 28. embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 table 29. typical and maximum current consumption from v dd supply at v dd = 3.6 v . . . . . . . . . . 60 table 30. typical and maximum current consumption from the v dda supply . . . . . . . . . . . . . . . . . 61 table 31. typical and maximum consumption in stop and standby modes . . . . . . . . . . . . . . . . . . . 62 table 32. typical and maximum current consumption from the v bat supply. . . . . . . . . . . . . . . . . . . 63 table 33. typical current consumption, code executing from flash, running from hse 8 mhz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 table 34. switching output i/o current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 table 35. peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 table 36. low-power mode wakeup timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 table 37. high-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 table 38. low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 table 39. hse oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 table 40. lse oscillator characteristics (f lse = 32.768 khz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 table 41. hsi oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 table 42. hsi14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 43. hsi48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 table 44. lsi oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 45. pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 46. flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 table 47. flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
list of tables stm32f091xb stm32f091xc 6/129 docid026284 rev 1 table 48. ems characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 table 49. emi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 table 50. esd absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 table 51. electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 table 52. i/o current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 table 53. i/o static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 table 54. output voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 table 55. i/o ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 table 56. nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 table 57. adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 table 58. r ain max for f adc = 14 mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 table 59. adc accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 table 60. dac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 table 61. comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 table 62. ts characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 table 63. v bat monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 table 64. timx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 table 65. iwdg min/max timeout period at 40 khz (lsi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 table 66. wwdg min/max timeout value at 48 mhz (pclk). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 table 67. i2c analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 table 68. spi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 table 69. i 2 s characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 02 table 70. ufbga100 ? ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 table 71. ufbga100 recommended pcb design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 table 72. lqfp100 ? 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . 108 table 73. ufbga64 ?ultra fine pitch ball grid array, 5 x 5 mm, 0.50 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 table 74. lqfp64 ? 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 113 table 75. wlcsp64 wafer level chip size package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 116 table 76. lqfp48 ? 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . 118 table 77. ufqfpn48 ? 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . 122 table 78. package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 table 79. ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 table 80. document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
docid026284 rev 1 7/129 stm32f091xb stm32f091xc list of figures 8 list of figures figure 1. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 2. clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 3. ufbga100 package ballout (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 figure 4. lqfp100 100-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 5. ufbga64 package ball-out (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 6. lqfp64 64-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 figure 7. wlcsp64 package ballout (bottom view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 figure 8. lqfp48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 figure 9. ufqfpn48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 figure 10. stm32f091xb/xc memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 figure 11. pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 figure 12. pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 figure 13. power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 14. current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 figure 15. high-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 figure 16. low-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 figure 17. typical application with an 8 mhz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 figure 18. typical application with a 32.768 khz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 figure 19. hsi oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 figure 20. hsi14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 figure 21. hsi48 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 figure 22. tc and tta i/o input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 figure 23. five volt tolerant (ft and ftf) i/o input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 figure 24. i/o ac characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 figure 25. recommended nrst pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 figure 26. adc accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 figure 27. typical connection diagram using the adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 figure 28. spi timing diagram - slave mode and cpha = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 figure 29. spi timing diagram - slave mode and cpha = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 figure 30. spi timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 figure 31. i2s slave timing diagram (philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 figure 32. i2s master timing diagram (philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 figure 33. ufbga100 ? ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 figure 34. ufbga100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 figure 35. ufbga100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 figure 36. lqfp100 ? 14 x 14 mm 100 pin low-profile quad flat package outline. . . . . . . . . . . . . . . 108 figure 37. lqfp100 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 figure 38. lqfp100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 figure 39. ufbga64 ? ultra fine pitch ball grid array, 5 x 5 mm, 0.50 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 figure 40. ufbga64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 figure 41. lqfp64 ? 10 x 10 mm 64 pin low-profile quad flat package outline. . . . . . . . . . . . . . . . . 113 figure 42. lqfp64 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 figure 43. lqfp64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 figure 44. wlcsp64 wafer level chip size package mechanical drawing. . . . . . . . . . . . . . . . . . . . . 116 figure 45. wlcsp64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 figure 46. lqfp48 ? 7 x 7 mm, 48 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 118
list of figures stm32f091xb stm32f091xc 8/129 docid026284 rev 1 figure 47. lqfp48 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 9 figure 48. lqfp48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 figure 49. ufqfpn48 ? 7 x 7 mm, 0.5 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . 121 figure 50. ufqfpn48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 figure 51. ufqfpn48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 figure 52. lqfp64 p d max vs. t a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
docid026284 rev 1 9/129 stm32f091xb stm32f091xc introduction 28 1 introduction this datasheet provides the ordering information and mechanical device characteristics of the stm32f091xb/xc microcontrollers. this document should be read in conjunction with the stm32f0xxxx reference manual (rm0091). the reference manual is available from the stmicroelectronics website www.st.com. for information on the arm ? cortex ? -m0 core, please refer to the cortex ? -m0 technical reference manual, available from the www.arm.com website.
description stm32f091xb stm32f091xc 10/129 docid026284 rev 1 2 description the stm32f091xb/xc microcontrollers incorporate the high-performance arm ? cortex ? - m0 32-bit risc core operating at a 48 mhz frequency, high-speed embedded memories (up to 256 kbytes of flash memory and 32 kbytes of sram), and an extensive range of enhanced peripherals and i/os. the device offers standard communication interfaces (two i 2 cs, two spis/one i2s, one hdmi cec and up to eight usarts), one can, one 12-bit adc, one 12-bit dac with two channels, seven general-purpose 16-bit timers, a 32-bit timer and an advanced-control pwm timer. the stm32f091xb/xc microcontrollers operate in the -40 to +85 c and -40 to +105 c temperature ranges, from a 2.0 to 3.6 v power supply. a comprehensive set of power- saving modes allows the design of low-power applications. the stm32f091xb/xc microcontrollers include devices in seven different packages ranging from 48 pins to 100 pins with a die form also available upon request. depending on the device chosen, different sets of peripherals are included. the description below provides an overview of the complete range of stm32f091xb/xc peripherals proposed. these features make the stm32f091xb/xc microcontrollers suitable for a wide range of applications such as application control and user interfaces, handheld equipment, a/v receivers and digital tv, pc peripherals, gaming and gps platforms, industrial applications, plcs, inverters, printers, scanners, alarm systems, video intercoms, and hvacs.
docid026284 rev 1 11/129 stm32f091xb stm32f091xc description 28 table 2. stm32f091xb/xc family device features and peripheral counts peripheral stm32f091cx stm32f091rx stm32f091vx flash (kbytes) 128 256 128 256 128 256 sram (kbytes) 32 timers advanced control 1 (16-bit) general purpose 5 (16-bit) 1 (32-bit) basic 2 (16-bit) comm. interfaces spi [i2s] (1) 2 [2] i 2 c2 usart 6 8 can 1 cec 1 12-bit adc (number of channels) 1 (10 ext. + 3 int.) 1 (16 ext. + 3 int.) 12-bit dac (number of channels) 1 (2) analog comparator 2 gpios 38 52 88 capacitive sensing channels 17 18 24 max. cpu frequency 48 mhz operating voltage 2.0 to 3.6 v operating temperature ambient operating temperature: -40c to 85c / -40c to 105c junction temperature: -40c to 105c / -40c to 125c packages lqfp48 ufqfpn48 lqfp64 ufbga64 wlcsp64 lqfp100 ufbga100 1. the spi interface can be used either in spi mode or in i2s audio mode.
description stm32f091xb stm32f091xc 12/129 docid026284 rev 1 figure 1. block diagram 06y9 fkdqqhov frpsofkdqqhov %5.(75lqsxwdv$) fk(75dv$) fk(75dv$) fkdqqhodv$) fkdqqhov frpso%5.dv$) fkdqqho frpso%5.dv$) fkdqqho frpso%5.dv$) ,5b287dv$) 5;7;&76576 &.dv$) 5;7;&76576 &.dv$) 6&/6'$60%$ p$iru)0 dv$) 6&/6'$ p$iru)0 dv$) &(&dv$) '$&b287 #9 '',2  #9 ''$  #9 ''$  $+%3&/. $3%3&/. $'&&/. 86$57&/. +&/. )&/. &(&&/. 3$>@ 3%>@ 3&>@ 3'>@ 3)>@3) 3)>@ jurxsvri fkdqqhov 6<1& #9 ''$  $) 026,6' 0,620&. 6&.&. 166:6dv$) #9 ''$  9 ''$  9 66$  *3'0$ fkdqqhov &257(;0&38 i 0$;  0+] 6huldo:luh 'hexj 19,& *3,2sruw$ *3,2sruw% *3,2sruw& *3,2sruw( *3,2sruw) 7rxfk 6hqvlqj &rqwuroohu 3$' $qdorj vzlwfkhv (;7,7 :.83 63,,6 63,,6 6<6&)*,) *3frpsdudwru 7,0(5 '%*0&8 :,qgrz:'* $3% $+% &5& 5(6(7  &/2&. &21752/ 3:07,0(5 7,0(5elw 7,0(5 7,0(5 7,0(5 7,0(5 7,0(5 86$57 86$57 ,& ,& +'0,&(& ,) elw '$& 3rzhu &rqwuroohu ;7$/26& 0+] ,qg:lqgrz:'* 6833/< 683(59,6,21 39' 3253'5 32:(5 92/75(* 9729 5&+60+] 5&+60+] 5&/6 3// )odvk lqwhuidfh )odvk*3/ 8swr.% elwv 2eo 65$0 .% 65$0 frqwuroohu 7hps vhqvru ,) elw $'& 6:&/. 6:',2 dv$) ,1387 ,1387 287387 dv$)  $'lqsxwv *3frpsdudwru $+% ghfrghu %xvpdwul[ #9 ''$  #9 '',2  9 ''  325 5hvhw ,qw 9 '',2 wr9 9 66  1567 9 ''$  9 66$   26&b,1 3) 26&b287 3) 9 %$7 wr9 26&b,1 26&b287 7$03(557& $/$50287 57& %dfnxs uhj 57&lqwhuidfh ;7$/n+] #96: 5;7;&76576 &.dv$) 5;7;&76576 &.dv$) 86$57 86$57 elw '$& 7,0(5 '$&b287 *3,2sruw' 3(>@ 5&+60+] 9 ''86% 2.,1 &56 6<1& 026,6' 0,620&. 6&.&. 166:6dv$) 5;7;576&.dv$) 86$57 5;7;576&.dv$) 86$57 5;7;576&.dv$) 86$57 5;7;576&.dv$) 86$57 %[&$1 7;5;dv$) 65$0 % /hjhqg 6xssolhge\9 ''$ 6xssolhge\9 %$7 6xssolhge\9 ''
docid026284 rev 1 13/129 stm32f091xb stm32f091xc functional overview 28 3 functional overview 3.1 arm ? -cortex ? -m0 core with embedded flash and sram the arm ? cortex ? -m0 processor is the latest generation of arm processors for embedded systems. it has been developed to provide a low-cost platform that meets the needs of mcu implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. the arm ? cortex ? -m0 32-bit risc processor features exceptional code-efficiency, delivering the high-performance expected from an arm core in the memory size usually associated with 8- and 16-bit devices. the stm32f0xx family has an embedded arm core and is therefore compatible with all arm tools and software. figure 1 shows the general block diagram of the device family. 3.2 memories the device has the following features: ? 32 kbytes of embedded sram accessed (read/write) at cpu clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications. ? the non-volatile memory is divided into two arrays: ? up to 256 kbytes of embedded flash memory for programs and data ? option bytes the option bytes are used to write-protect the memory (with 4 kb granularity) and/or readout-protect the whole memory with the following options: ? level 0: no readout protection ? level 1: memory readout protection, the flash memory cannot be read from or written to if either debug features are connected or boot in ram is selected ? level 2: chip readout protection, debug features (cortex ? -m0 serial wire) and boot in ram selection disabled 3.3 boot modes at startup, the boot pin and boot selector option bits are used to select one of the three boot options: ? boot from user flash ? boot from system memory ? boot from embedded sram the boot pin is shared with the standard gpio and can be disabled through the boot selector option bits. the boot loader is located in system memory. it is used to reprogram the flash memory by using usart on pins pa14/pa15 or pa9/pa10 or i2c on pins pb6/pb7.
functional overview stm32f091xb stm32f091xc 14/129 docid026284 rev 1 3.4 cyclic redundancy check calculation unit (crc) the crc (cyclic redundancy check) calculation unit is used to get a crc code using a configurable generator polynomial value and size. among other applications, crc-based techniques are used to verify data transmission or storage integrity. in the scope of the en/iec 60335-1 standard, they offer a means of verifying the flash memory integrity. the crc calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link- time and stored at a given memory location. 3.5 power management 3.5.1 power supply schemes ? v dd = 2.0 to 3.6 v: external power supply for i/os and the internal regulator. provided externally through v dd pins. ? v dda = from v dd to 3.6 v: external analog power supply for adc, dac, reset blocks, rcs and pll (minimum voltage to be applied to v dda is 2.4 v when the adc or dac are used). the v dda voltage level must be always greater or equal to the v dd voltage level and must be provided first. ? v ddio2 = 1.65 to 3.6 v: external power supply for marked i/os. provided externally through the vddio2 pin. the v ddio2 voltage level is completely independent from v dd or v dda , but it must not be provided without a valid supply on v dd . the v ddio2 supply is monitored and compared with the internal reference voltage (v refint ). when the v ddio2 is below this threshold, all the i/os supplied from this rail are disabled by hardware. the output of this comparator is connected to exti line 31 and it can be used to generate an interrupt. refer to the pinout diagrams or tables for concerned i/os list. ? v bat = 1.65 to 3.6 v: power supply for rtc, external clock 32 khz oscillator and backup registers (through power switch) when v dd is not present. for more details on how to connect power pins, refer to figure 13: power supply scheme . 3.5.2 power supply supervisors the device has integrated power-on reset (por) and power-down reset (pdr) circuits. they are always active, and ensure proper operation above a threshold of 2 v. the device remains in reset mode when the monitored supply voltage is below a specified threshold, v por/pdr , without the need for an external reset circuit. ? the por monitors only the v dd supply voltage. during the startup phase it is required that v dda should arrive first and be greater than or equal to v dd . ? the pdr monitors both the v dd and v dda supply voltages, however the v dda power supply supervisor can be disabled (by programming a dedicated option bit) to reduce the power consumption if the application design ensures that v dda is higher than or equal to v dd . the device features an embedded programmable voltage detector (pvd) that monitors the v dd power supply and compares it to the v pvd threshold. an interrupt can be generated when v dd drops below the v pvd threshold and/or when v dd is higher than the v pvd
docid026284 rev 1 15/129 stm32f091xb stm32f091xc functional overview 28 threshold. the interrupt service routine can then generate a warning message and/or put the mcu into a safe state. the pvd is enabled by software. 3.5.3 voltage regulator the regulator has two operating modes and it is always enabled after reset. ? main (mr) is used in normal operating mode (run). ? low power (lpr) can be used in stop mode where the power demand is reduced. in standby mode, it is put in power down mode. in this mode, the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and sram are lost). 3.5.4 low-power modes the stm32f091xb/xc microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: ? sleep mode in sleep mode, only the cpu is stopped. all peripherals continue to operate and can wake up the cpu when an interrupt/event occurs. ? stop mode stop mode achieves very low power consumption while retaining the content of sram and registers. all clocks in the 1.8 v domain are stopped, the pll, the hsi rc and the hse crystal oscillators are disabled. the voltage regulator can also be put either in normal or in low power mode. the device can be woken up from stop mode by any of the exti lines. the exti line source can be one of the 16 external lines, the pvd output, rtc, i2c1, usart1, usart2, usart3, compx, v ddio2 supply comparator or the cec. the peripherals listed above can be configured to enable the hsi rc oscillator for processing incoming data. if this is used when the voltage regulator is put in low power mode, the regulator is first switched to normal mode before the clock is provided to the given peripheral. ? standby mode the standby mode is used to achieve the lowest power consumption. the internal voltage regulator is switched off so that the entire 1.8 v domain is powered off. the pll, the hsi rc and the hse crystal oscillators are also switched off. after entering standby mode, sram and register contents are lost except for registers in the rtc domain and standby circuitry. the device exits standby mode when an external reset (nrst pin), an iwdg reset, a rising edge on the wkup pins, or an rtc event occurs. note: the rtc, the iwdg, and the corresponding clock sources are not stopped by entering stop or standby mode. 3.6 clocks and startup system clock selection is performed on startup, however the internal rc 8 mhz oscillator is selected as default cpu clock on reset. an external 4-32 mhz clock can be selected, in which case it is monitored for failure. if failure is detected, the system automatically switches
functional overview stm32f091xb stm32f091xc 16/129 docid026284 rev 1 back to the internal rc oscillator. a software interrupt is generated if enabled. similarly, full interrupt management of the pll clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). several prescalers allow the application to configure the frequency of the ahb and the apb domains. the maximum frequency of the ahb and the apb domains is 48 mhz. additionally, also the internal rc 48 mhz oscillator can be selected for system clock or pll input source. this oscillator can be automatically fine-trimmed by the means of the crs peripheral using the external synchronization. figure 2. clock tree  0+] +6(26&  26&b,1 26&b287 26&b,1 26&b287  0+] +6,5& wr,:'* 3// [[ [  3//08/ 0&2 0dlqforfn rxwsxw $+%  3//&/. +6, +6( $3% suhvfdohu  +&/. 3//&/. wr$+%exvfruh phpru\dqg'0$ wr$'& forfnlqsxw /6( /6, +6, +6, +6(  wr57& 3//65& 6: 0&2  6<6&/. 57&&/. 57&6(/>@ 6<6&/. wr7,0   ,i $3%suhvfdohu  [hovh[ )/,7)&/. wr)odvk +6, 0+] +6,5& +6,  /6( wr,& wr86$57 wr86$57 /6( +6, 6<6&/. 3&/. 6<6&/. +6, 3&/. 069 wr,6 wr&(& wrfruwh[6\vwhpwlphu )+&/.&ruwh[iuhhuxqqlqjforfn wr$3%shulskhudov $+% suhvfdohu  &66   /6(26& n+]  /6,5& n+] /6, /6( &56 0+] +6,5& +6, 35(',9 +6,    3//12',9 surjudpplqjlqwhuidfh 0&235( wr7,0 dv\qfkurqrxv wr86$57
docid026284 rev 1 17/129 stm32f091xb stm32f091xc functional overview 28 3.7 general-purpose inputs/outputs (gpios) each of the gpio pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. most of the gpio pins are shared with digital or analog alternate functions. the i/o configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the i/os registers. 3.8 direct memory access controller (dma) the 12-channel general-purpose dmas (seven channels for dma1 and five channels for dma2) manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. the dmas support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. each channel is connected to dedicated hardware dma requests, with support for software trigger on each channel. configuration is made by software and transfer sizes between source and destination are independent. dma can be used with the main peripherals: spi, i2s, i2c, usart, all timx timers (except tim14), dac and adc. 3.9 interrupts and events 3.9.1 nested vectored interrupt controller (nvic) the stm32f0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of cortex ? -m0) and 4 priority levels. ? closely coupled nvic gives low latency interrupt processing ? interrupt entry vector table address passed directly to the core ? closely coupled nvic core interface ? allows early processing of interrupts ? processing of late arriving higher priority interrupts ? support for tail-chaining ? processor state automatically saved ? interrupt entry restored on interrupt exit with no instruction overhead this hardware block provides flexible interrupt management features with minimal interrupt latency. 3.9.2 extended interrupt/event controller (exti) the extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. a pending register maintains the status of the interrupt requests. the exti
functional overview stm32f091xb stm32f091xc 18/129 docid026284 rev 1 can detect an external line with a pulse width shorter than the internal clock period. up to 88 gpios can be connected to the 16 external interrupt lines. 3.10 analog to digital converter (adc) the 12-bit analog to digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, vbat voltage measurement) channels and performs conversions in single-shot or scan modes. in scan mode, automatic conversion is performed on a selected group of analog inputs. the adc can be served by the dma controller. an analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. an interrupt is generated when the converted voltage is outside the programmed thresholds. 3.10.1 temperature sensor the temperature sensor (ts) generates a voltage v sense that varies linearly with temperature. the temperature sensor is internally connected to the adc_in16 input channel which is used to convert the sensor output voltage into a digital value. the sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. as the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. to improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by st. the temperature sensor factory calibration data are stored by st in the system memory area, accessible in read-only mode. 3.10.2 internal voltage reference (v refint ) the internal voltage reference (v refint ) provides a stable (bandgap) voltage output for the adc and comparators. v refint is internally connected to the adc_in17 input channel. the precise voltage of v refint is individually measured for each part by st during production test and stored in the system memory area. it is accessible in read-only mode. table 3. temperature sensor calibration values calibration value name description memory address ts_cal1 ts adc raw data acquired at a temperature of 30 c ( 5 c), v dda = 3.3 v ( 10 mv) 0x1fff f7b8 - 0x1fff f7b9 ts_cal2 ts adc raw data acquired at a temperature of 110 c ( 5 c), v dda = 3.3 v ( 10 mv) 0x1fff f7c2 - 0x1fff f7c3
docid026284 rev 1 19/129 stm32f091xb stm32f091xc functional overview 28 3.10.3 v bat battery voltage monitoring this embedded hardware feature allows the application to measure the v bat battery voltage using the internal adc channel adc_in18. as the v bat voltage may be higher than v dda , and thus outside the adc input range, the v bat pin is internally connected to a bridge divider by 2. as a consequence, the converted digital value is half the v bat voltage. 3.11 digital-to-analog converter (dac) the two 12-bit buffered dac channels can be used to convert digital signals into analog voltage signal outputs. the chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration. this digital interface supports the following features: ? 8-bit or 12-bit monotonic output ? left or right data alignment in 12-bit mode ? synchronized update capability ? noise-wave generation ? triangular-wave generation ? dual dac channel independent or simultaneous conversions ? dma capability for each channel ? external triggers for conversion six dac trigger inputs are used in the device. the dac is triggered through the timer trigger outputs and the dac interface is generating its own dma requests. 3.12 comparators (comp) the device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity. the reference voltage can be one of the following: ? external i/o ? dac output pins ? internal reference voltage or submultiple (1/4, 1/2, 3/4).refer to table 28: embedded internal reference voltage for the value and precision of the internal reference voltage. both comparators can wake up from stop mode, generate interrupts and breaks for the timers and can be also combined into a window comparator. table 4. internal voltage reference calibration values calibration value name description memory address vrefint_cal raw data acquired at a temperature of 30 c ( 5 c), v dda = 3.3 v ( 10 mv) 0x1fff f7ba - 0x1fff f7bb
functional overview stm32f091xb stm32f091xc 20/129 docid026284 rev 1 3.13 touch sensing controller (tsc) the stm32f091xb/xc devices provide a simple solution for adding capacitive sensing functionality to any application. these devices offer up to 2324 capacitive sensing channels distributed over 8 analog i/o groups. capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). the capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. it consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. to limit the cpu bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. the touch sensing controller is fully supported by the stmtouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application. table 5. capacitive sensing gpios available on stm32f091xb/xc devices group capacitive sensing signal name pin name group capacitive sensing signal name pin name 1 tsc_g1_io1 pa0 5 tsc_g5_io1 pb3 tsc_g1_io2 pa1 tsc_g5_io2 pb4 tsc_g1_io3 pa2 tsc_g5_io3 pb6 tsc_g1_io4 pa3 tsc_g5_io4 pb7 2 tsc_g2_io1 pa4 6 tsc_g6_io1 pb11 tsc_g2_io2 pa5 tsc_g6_io2 pb12 tsc_g2_io3 pa6 tsc_g6_io3 pb13 tsc_g2_io4 pa7 tsc_g6_io4 pb14 3 tsc_g3_io1 pc5 7 tsc_g7_io1 pe2 tsc_g3_io2 pb0 tsc_g7_io2 pe3 tsc_g3_io3 pb1 tsc_g7_io3 pe4 tsc_g3_io4 pb2 tsc_g7_io4 pe5 4 tsc_g4_io1 pa9 8 tsc_g8_io1 pd12 tsc_g4_io2 pa10 tsc_g8_io2 pd13 tsc_g4_io3 pa11 tsc_g8_io3 pd14 tsc_g4_io4 pa12 tsc_g8_io4 pd15
docid026284 rev 1 21/129 stm32f091xb stm32f091xc functional overview 28 table 6. no. of capacitive sensing channels available on stm32f091xb/xc devices analog i/o group number of capacitive sensing channels stm32f091vx stm32f091rx stm32f091cx g1 3 3 3 g2 3 3 3 g3 3 3 2 g4 3 3 3 g5 3 3 3 g6 3 3 3 g7 3 0 0 g8 3 0 0 number of capacitive sensing channels 24 18 17
functional overview stm32f091xb stm32f091xc 22/129 docid026284 rev 1 3.14 timers and watchdogs the stm32f091xb/xc devices include up to six general-purpose timers, two basic timers and an advanced control timer. table 7 compares the features of the different timers. 3.14.1 advanced-control timer (tim1) the advanced-control timer (tim1) can be seen as a three-phase pwm multiplexed on six channels. it has complementary pwm outputs with programmable inserted dead times. it can also be seen as a complete general-purpose timer. the four independent channels can be used for: ? input capture ? output compare ? pwm generation (edge or center-aligned modes) ? one-pulse mode output if configured as a standard 16-bit timer, it has the same features as the timx timer. if configured as the 16-bit pwm generator, it has full modulation capability (0-100%). the counter can be frozen in debug mode. many features are shared with those of the standard timers which have the same architecture. the advanced control timer can therefore work together with the other timers via the timer link feature for synchronization or event chaining. table 7. timer feature comparison timer type timer counter resolution counter type prescaler factor dma request generation capture/compare channels complementary outputs advanced control tim1 16-bit up, down, up/down any integer between 1 and 65536 yes 4 yes general purpose tim2 32-bit up, down, up/down any integer between 1 and 65536 yes 4 no tim3 16-bit up, down, up/down any integer between 1 and 65536 yes 4 no tim14 16-bit up any integer between 1 and 65536 no 1 no tim15 16-bit up any integer between 1 and 65536 yes 2 yes tim16, tim17 16-bit up any integer between 1 and 65536 yes 1 yes basic tim6, tim7 16-bit up any integer between 1 and 65536 yes 0 no
docid026284 rev 1 23/129 stm32f091xb stm32f091xc functional overview 28 3.14.2 general-purpose timers (tim2..3, tim14..17) there are six synchronizable general-purpose timers embedded in the stm32f091xb/xc devices (see table 7 for differences). each general-purpose timer can be used to generate pwm outputs, or as simple time base. tim2, tim3 stm32f091xb/xc devices feature two synchronizable 4-channel general-purpose timers. tim2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. tim3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. they feature 4 independent channels each for input capture/output compare, pwm or one-pulse mode output. this gives up to 12 input captures/output compares/pwms on the largest packages. the tim2 and tim3 general-purpose timers can work together or with the tim1 advanced- control timer via the timer link feature for synchronization or event chaining. tim2 and tim3 both have independent dma request generation. these timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. their counters can be frozen in debug mode. tim14 this timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. tim14 features one single channel for input capture/output compare, pwm or one-pulse mode output. its counter can be frozen in debug mode. tim15, tim16 and tim17 these timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. tim15 has two independent channels, whereas tim16 and tim17 feature one single channel for input capture/output compare, pwm or one-pulse mode output. the tim15, tim16 and tim17 timers can work together, and tim15 can also operate withtim1 via the timer link feature for synchronization or event chaining. tim15 can be synchronized with tim16 and tim17. tim15, tim16 and tim17 have a complementary output with dead-time generation and independent dma request generation. their counters can be frozen in debug mode. 3.14.3 basic timers tim6 and tim7 these timers are mainly used for dac trigger generation. they can also be used as a generic 16-bit time base. 3.14.4 independent watchdog (iwdg) the independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. it is clocked from an independent 40 khz internal rc and as it
functional overview stm32f091xb stm32f091xc 24/129 docid026284 rev 1 operates independently from the main clock, it can operate in stop and standby modes. it can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. it is hardware or software configurable through the option bytes. the counter can be frozen in debug mode. 3.14.5 system window watchdog (wwdg) the system window watchdog is based on a 7-bit downcounter that can be set as free running. it can be used as a watchdog to reset the device when a problem occurs. it is clocked from the apb clock (pclk). it has an early warning interrupt capability and the counter can be frozen in debug mode. 3.14.6 systick timer this timer is dedicated to real-time operating systems, but could also be used as a standard down counter. it features: ? a 24-bit down counter ? autoreload capability ? maskable system interrupt generation when the counter reaches 0 ? programmable clock source (hclk or hclk/8) 3.15 real-time clock (rtc) and backup registers the rtc and the five backup registers are supplied through a switch that takes power either on v dd supply when present or through the v bat pin. the backup registers are five 32-bit registers used to store 20 bytes of user application data when v dd power is not present. they are not reset by a system or power reset, or when the device wakes up from standby mode. the rtc is an independent bcd timer/counter. its main features are the following: ? calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in bcd (binary-coded decimal) format. ? automatic correction for 28, 29 (leap year), 30, and 31 day of the month. ? programmable alarm with wake up from stop and standby mode capability. ? periodic wakeup unit with programmable resolution and period. ? on-the-fly correction from 1 to 32767 rtc clock pulses. this can be used to synchronize the rtc with a master clock. ? digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. ? three anti-tamper detection pins with programmable filter. the mcu can be woken up from stop and standby modes on tamper event detection. ? timestamp feature which can be used to save the calendar content. this function can be triggered by an event on the timestamp pin, or by a tamper event. the mcu can be woken up from stop and standby modes on timestamp event detection. ? reference clock detection: a more precise second source clock (50 or 60 hz) can be used to enhance the calendar precision.
docid026284 rev 1 25/129 stm32f091xb stm32f091xc functional overview 28 the rtc clock sources can be: ? a 32.768 khz external crystal ? a resonator or oscillator ? the internal low-power rc oscillator (typical frequency of 40 khz) ? the high-speed external clock divided by 32 3.16 inter-integrated circuit interfaces (i 2 c) up to two i 2 c interfaces (i2c1 and i2c2) can operate in multimaster or slave modes. both can support standard mode (up to 100 kbit/s), fast mode (up to 400 kbit/s) and fast mode plus (up to 1 mbit/s) with 20 ma output drive on most of the associated i/os. both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). they also include programmable analog and digital noise filters. in addition, i2c1 provides hardware support for smbus 2.0 and pmbus 1.1: arp capability, host notify protocol, hardware crc (pec) generation/verification, timeouts verifications and alert protocol management. i2c1 also has a clock domain independent from the cpu clock, allowing the i2c1 to wake up the mcu from stop mode on address match. the i2c interfaces can be served by the dma controller. refer to table 9 for the differences between i2c1 and i2c2. table 8. comparison of i2c analog and digital filters analog filter digital filter pulse width of suppressed spikes 50 ns programmable length from 1 to 15 i2c peripheral clocks benefits available in stop mode 1. extra filtering capability vs. standard requirements. 2. stable length drawbacks variations depending on temperature, voltage, process wakeup from stop on address match is not available when digital filter is enabled. table 9. stm32f091xb/xc i 2 c implementation i2c features (1) i2c1 i2c2 7-bit addressing mode x x 10-bit addressing mode x x standard mode (up to 100 kbit/s) x x fast mode (up to 400 kbit/s) x x fast mode plus (up to 1 mbit/s) with output drive i/os x x independent clock x -
functional overview stm32f091xb stm32f091xc 26/129 docid026284 rev 1 3.17 universal synchronous/asynchronous receiver transmitters (usart) the device embeds up to eight universal synchronous/asynchronous receiver transmitters (usart1, usart2, usart3, usart4, usart5, usart6, usart7, usart8), which communicate at speeds of up to 6 mbit/s. they provide hardware management of the cts, rts and rs485 de signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. usart1, usart2 and usart3 support also smartcard communication (iso 7816), irda sir endec, lin master/slave capability and auto baud rate feature, and have a clock domain independent from the cpu clock, allowing to wake up the mcu from stop mode. the usart interfaces can be served by the dma controller. smbus x - wakeup from stop x - 1. x = supported. table 9. stm32f091xb/xc i 2 c implementation (continued) i2c features (1) i2c1 i2c2 table 10. stm32f091xb/xc usart implementation usart modes/features (1) 1. x = supported. usart1 usart2 usart3 usart4 usart5 usart6 usart7 usart8 hardware flow control for modem x x - continuous communication using dma x x x multiprocessor communication x x x synchronous mode x x x smartcard mode x - - single-wire half-duplex communication x x x irda sir endec block x - - lin mode x - - dual clock domain and wakeup from stop mode x - - receiver timeout interrupt x - - modbus communication x - - auto baud rate detection x - - driver enable x x x
docid026284 rev 1 27/129 stm32f091xb stm32f091xc functional overview 28 3.18 serial peripheral interface (spi)/inter-integrated sound interfaces (i 2 s) two spis are able to communicate up to 18 mbit/s in slave and master modes in full-duplex and half-duplex communication modes. the 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. two standard i 2 s interfaces (multiplexed with spi1 and spi2 respectively) supporting four different audio standards can operate as master or slave at half-duplex communication mode. they can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. audio sampling frequency from 8 khz up to 192 khz can be set by an 8-bit programmable linear prescaler. when operating in master mode, they can output a clock for an external audio component at 256 times the sampling frequency. table 11. stm32f091xb/xc spi/i2s implementation spi features (1) 1. x = supported. spi1 and spi2 hardware crc calculation x rx/tx fifo x nss pulse mode x i2s mode x ti mode x
functional overview stm32f091xb stm32f091xc 28/129 docid026284 rev 1 3.19 high-definition multimedia interface (hdmi) - consumer electronics control (cec) the device embeds a hdmi-cec controller that provides hardware support for the consumer electronics control (cec) protocol (supplement 1 to the hdmi standard). this protocol provides high-level control functions between all audiovisual products in an environment. it is specified to operate at low speeds with minimum processing and memory overhead. it has a clock domain independent from the cpu clock, allowing the hdmi_cec controller to wakeup the mcu from stop mode on data reception. 3.20 controller area network (can) the can is compliant with specifications 2.0a and b (active) with a bit rate up to 1 mbit/s. it can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. it has three transmit mailboxes, two receive fifos with 3 stages and 14 scalable filter banks. 3.21 clock recovery system (crs) the stm32f091xb/xc embeds a special block which allows automatic trimming of the internal 48 mhz oscillator to guarantee its optimal accuracy over the whole device operational range. this automatic trimming is based on the external synchronization signal, which could be either derived from lse oscillator, from an external signal on crs_sync pin or generated by user software. for faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action. 3.22 serial wire debug port (sw-dp) an arm sw-dp interface is provided to allow a serial wire debugging tool to be connected to the mcu.
docid026284 rev 1 29/129 stm32f091xb stm32f091xc pinouts and pin descriptions 42 4 pinouts and pin descriptions figure 3. ufbga100 package ballout (top view) 069 $ % ( ' & ) * + - . / 0 3( 3& 3& 3( 3& 3) 966$ 3) 9''$ 3( 3( 3( 3( 9%$7 3) 3) 1567 3& 3& 3$ 3$ 3% 3( 3% 966 1& 9'' 3& 3$ 3$ 3$ 3)%227 3% 9'' 3$ 3$ 3$ 3' 3% 3% 3& 3& 3% 3' 3' 3% 3% 3% 3' 3( 3( 3% 3' 3' 3' 3( 3( 3$ 3' 3' 3' 3( 3( 3$ 3& 3& 3& 3$ 3' 3' 3% 3% 3( 3$ 3& 3) 3$ 3& 3' 3' 3% 3% 3( 966 9'',2 3$ 3$ 3$ 3& 3& 3' 3' 3% 3% 3( 966 9''             3& 3) 3) ,2slqvxssolhge\9'',2
pinouts and pin descriptions stm32f091xb stm32f091xc 30/129 docid026284 rev 1 figure 4. lqfp100 100-pin package pinout (top view) 069                                                                            3( 3( 3( 3( 3( 9%$7 3&26&b,1 3&26&b287 3) 3) 3)26&b,1 1567 3& 3& 3& 3& 3) 966$ 3) 9''$ 3$ 3$ 3$ 9'',2 966 3) 3$  3$  3$   3$  3$  3$  3& 3& 3& 3& 3' 3' 3' 3' 3' 3' 3' 3' 3% 3% 3%  3% 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3( 3( 3( 3( 3( 3( 3( 3( 3( 3% 3% 966 9'' 9'' 966 3( 3( 3% 3% 3)%227 3% 3% 3% 3% 3% 3' 3' 3' 3' 3' 3' 3' 3' 3& 3& 3& 3$ 3$                          /4)3 3& 3)26&b287 *0qjotvqqmjfecz7%%*0
docid026284 rev 1 31/129 stm32f091xb stm32f091xc pinouts and pin descriptions 42 figure 5. ufbga64 package ball-out (top view) 3& 26&b,1 3$ 3$ 3% 3% 3$ 3$ + 3% 3& 3& ' %227 & 3% 9''$ 3% % 3& 26&b287 3% $         26&b,1 26&b287 9'' * ) ( 3& 3& 3& 3% 3% 3% 966 3& 1567 3& 3% 3$ 3% 9'' 9'' 3% 3$ 966 966$ 3$ 3% 3% 3$ 3) 3) 9'',2 966 966 9%$7 3% 3$ 3% 069 /hjhqg,2slqvxsssolhge\9'',2 3$ 3$ 3$ 3$ 3& 3$ 3& 3& 3$ 3$ 3& 3' 3& 3& 3&
pinouts and pin descriptions stm32f091xb stm32f091xc 32/129 docid026284 rev 1 figure 6. lqfp64 64-pin package pinout (top view)                                                                  9%$7 3&26&b,1 3)26&b,1 1567 3& 3& 3& 3& 966$ 9''$ 3$ 3$ 3$ 9'' 3% 3% 3% 3% 3% 3% 3% 3' 3&  3&  3&  3$ 3$ 9'',2 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 966 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3% 3% /4)3 3& 9'' 966 9'' 966 3)26&b287 3&26&b287 *0qjotvqqmjfecz7%%*0 069 3)%227
docid026284 rev 1 33/129 stm32f091xb stm32f091xc pinouts and pin descriptions 42 figure 7. wlcsp64 package ballout (bottom view) 069    $ % & ' ( ) * ,2slqvxssolhge\9'',2 +  9'' 966 3% 3% 3' 3& 3$ 9'',2 9%$7 3& 3% 3% 3& 3$ 966 3$ 3& 26&b,1 3& 26&b287 3) 3% 3& 3$ 3$ 3$ 3) 26&b,1 1567 3& 3% 3% 3$ 3$ 3& 3) 26&b287 3& 3& 3$ 3$ 3& 3& 3& 3& 3$ 3$ 3$ 3& 3% 3% 3% 966$ 966 9'' 3$ 3% 3% 3% 3% 9''$ 3$ 3$ 3& 3% 3% 966 9''
pinouts and pin descriptions stm32f091xb stm32f091xc 34/129 docid026284 rev 1 figure 8. lqfp48 48-pin package pinout (top view)                                             /4)3 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3% 966 9'' 9'',2 966 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 9%$7 1567 966$ 9''$ 3$ 3$ 3$ 9'' 966 3% 3% 3% 3% 3% 3% 3% 3$ 3$ 3& 3&26&b,1 3)26&b,1 3)26&b287 3&26&b287 ,2slqvxssolhge\9'',2 069 3)%227    
docid026284 rev 1 35/129 stm32f091xb stm32f091xc pinouts and pin descriptions 42 figure 9. ufqfpn48 48-pin package pinout (top view) 069               8)4)31                                9%$7 1567 966$ 9''$ 3$ 3$ 3& 3&26&b,1 3)26&b,1 3)26&b287 3&26&b287 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3% 966 9'' 9'',2 966 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 9'' 966 3% 3% 3% 3% 3% 3% 3% 3$ 3$ 3$  *0qjotvqqmjfecz7%%*0 3)%227 table 12. legend/abbreviations used in the pinout table name abbreviation definition pin name unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name pin type s supply pin i input only pin i/o input / output pin i/o structure ft 5 v tolerant i/o ftf 5 v tolerant i/o, fm+ capable tta 3.3 v tolerant i/o directly connected to adc tc standard 3.3 v i/o rst bidirectional reset pin with embedded weak pull-up resistor notes unless otherwise specified by a note, all i/os are set as floating inputs during and after reset. pin functions alternate functions functions selected through gpiox_afr registers additional functions functions directly selected/enabled through peripheral registers
pinouts and pin descriptions stm32f091xb stm32f091xc 36/129 docid026284 rev 1 table 13. stm32f091xb/xc pin definitions pin numbers pin name (function after reset) pin typ e i/o structure notes pin functions ufbga100 lqfp100 ufbga64 lqfp64 wlcsp64 lqfp48/ufqfpn48 alternate functions additional functions b2 1 - - - - pe2 i/o ft tsc_g7_io1, tim3_etr - a1 2 - - - - pe3 i/o ft tsc_g7_io2, tim3_ch1 - b1 3 - - - - pe4 i/o ft tsc_g7_io3, tim3_ch2 - c2 4 - - - - pe5 i/o ft tsc_g7_io4, tim3_ch3 - d2 5 - - - - pe6 i/o ft tim3_ch4 wkup3, rtc_tamp3 e2 6 b2 1 b8 1 vbat s - - backup power supply c1 7 a2 2 b7 2 pc13 i/o tc (1) (2) - wkup2, rtc_tamp1, rtc_ts, rtc_out d1 8 a1 3 c8 3 pc14- osc32_in (pc14) i/o tc (1) (2) - osc32_in e1 9 b1 4 c7 4 pc15- osc32_out (pc15) i/o tc (1) (2) - osc32_out f2 10 - - - - pf9 i/o ft tim15_ch1, usart6_tx - g2 11 - - - - pf10 i/o ft tim15_ch2, usart6_rx - f1 12 c1 5 d8 5 pf0-osc_in (pf0) i/o ftf crs_ sync, i2c1_sda osc_in g1 13 d1 6 e8 6 pf1-osc_out (pf1) i/o ftf i2c1_scl osc_out h2 14 e1 7 d7 7 nrst i/o rst device reset input / internal reset output (active low) h1 15 e3 8 e7 - pc0 i/o tta eventout, usart6_tx, usart7_tx adc_in10 j2 16 e2 9 f8 - pc1 i/o tta eventout, usart6_rx, usart7_rx adc_in11 j3 17 f2 10 d6 - pc2 i/o tta spi2_miso, i2s2_mck, eventout, usart8_tx adc_in12 k2 18 g1 11 e6 - pc3 i/o tta spi2_mosi, i2s2_sd, eventout, usart8_rx adc_in13
docid026284 rev 1 37/129 stm32f091xb stm32f091xc pinouts and pin descriptions 42 j1 19 - - - - pf2 i/o ft eventout, usart7_tx, usart7_ck_rts wkup8 k1 20 f1 12 g8 8 vssa s - analog ground m1 21 h1 13 h8 9 vdda s - analog power supply l1 22 - - - - pf3 i/o ft eventout, usart7_rx, usart6_ck_rts l2 23 g2 14 f7 10 pa0 i/o tta usart2_cts, tim2_ch1_etr, tsc_g1_io1, usart4_tx comp1_out rtc_ tamp2, wkup1, adc_in0, comp1_inm6 m2 24 h2 15 f6 11 pa1 i/o tta usart2_rts, tim2_ch2, tim15_ch1n, tsc_g1_io2, usart4_rx, eventout adc_in1, comp1_inp k3 25 f3 16 e5 12 pa2 i/o tta usart2_tx, tim2_ch3, tim15_ch1, tsc_g1_io3 comp2_out adc_in2, wkup4, comp2_inm6 l3 26 g3 17 h7 13 pa3 i/o tta usart2_rx,tim2_ch4, tim15_ch2, tsc_g1_io4 adc_in3, comp2_inp d3 27 c2 18 g7 - vss s - ground h3 28 d2 19 g6 - vdd s - digital power supply m3 29 h3 20 h6 14 pa4 i/o tta spi1_nss, i2s1_ws, tim14_ch1, tsc_g2_io1, usart2_ck, usart6_tx comp1_inm4, comp2_inm4, adc_in4, dac_out1 k4 30 f4 21 f5 15 pa5 i/o tta spi1_sck, i2s1_ck, cec, tim2_ch1_etr, tsc_g2_io2, usart6_rx comp1_inm5, comp2_inm5, adc_in5, dac_out2 table 13. stm32f091xb/xc pin definitions (continued) pin numbers pin name (function after reset) pin typ e i/o structure notes pin functions ufbga100 lqfp100 ufbga64 lqfp64 wlcsp64 lqfp48/ufqfpn48 alternate functions additional functions
pinouts and pin descriptions stm32f091xb stm32f091xc 38/129 docid026284 rev 1 l4 31 g4 22 g5 16 pa6 i/o tta spi1_miso, i2s1_mck, tim3_ch1, tim1_bkin, tim16_ch1, comp1_out, tsc_g2_io3, eventout, usart3_cts adc_in6 m4 32 h4 23 e4 17 pa7 i/o tta spi1_mosi, i2s1_sd, tim3_ch2, tim14_ch1, tim1_ch1n, tim17_ch1, comp2_out, tsc_g2_io4, eventout adc_in7 k5 33 h5 24 h5 - pc4 i/o tta eventout, usart3_tx adc_in14 l5 34 h6 25 f4 - pc5 i/o tta tsc_g3_io1, usart3_rx adc_in15, wkup5 m5 35 f5 26 g4 18 pb0 i/o tta tim3_ch3, tim1_ch2n, tsc_g3_io2, eventout, usart3_ck adc_in8 m6 36 g5 27 f3 19 pb1 i/o tta tim3_ch4, usart3_rts, tim14_ch1, tim1_ch3n, tsc_g3_io3 adc_in9 l6 37 g6 28 h4 20 pb2 i/o ft tsc_g3_io4 - m7 38 - - - - pe7 i/o ft tim1_etr, usart5_ck_rts - l7 39 - - - - pe8 i/o ft tim1_ch1n, usart4_tx - m8 40 - - - - pe9 i/o ft tim1_ch1, usart4_rx - l8 41 - - - - pe10 i/o ft tim1_ch2n, usart5_tx - m9 42 - - - - pe11 i/o ft tim1_ch2, usart5_rx - l9 43 - - - - pe12 i/o ft spi1_nss, i2s1_ws, tim1_ch3n - m10 44 - - - - pe13 i/o ft spi1_sck, i2s1_ck, tim1_ch3 - table 13. stm32f091xb/xc pin definitions (continued) pin numbers pin name (function after reset) pin typ e i/o structure notes pin functions ufbga100 lqfp100 ufbga64 lqfp64 wlcsp64 lqfp48/ufqfpn48 alternate functions additional functions
docid026284 rev 1 39/129 stm32f091xb stm32f091xc pinouts and pin descriptions 42 m11 45 - - - - pe14 i/o ft spi1_miso, i2s1_mck, tim1_ch4 - m12 46 - - - - pe15 i/o ft spi1_mosi, i2s1_sd, tim1_bkin - l10 47 g7 29 g3 21 pb10 i/o ftf spi2_sck, i2s2_ck, i2c2_scl, usart3_tx, cec, tsc_sync, tim2_ch3 - l11 48 h7 30 h3 22 pb11 i/o ftf usart3_rx, tim2_ch4, eventout, tsc_g6_io1, i2c2_sda - f12 49 d5 31 h2 23 vss s - ground g12 50 e5 32 h1 24 vdd s - digital power supply l12 51 h8 33 g2 25 pb12 i/o ft tim1_bkin, tim15_bkin, spi2_nss, i2s2_ws, usart3_ck, tsc_g6_io2, eventout - k12 52 g8 34 f2 26 pb13 i/o ftf spi2_sck, i2s2_ck, i2c2_scl, usart3_cts, tim1_ch1n, tsc_g6_io3 - k11 53 f8 35 g1 27 pb14 i/o ftf spi2_miso, i2s2_mck, i2c2_sda, usart3_rts, tim1_ch2n, tim15_ch1, tsc_g6_io4 - k10 54 f7 36 f1 28 pb15 i/o ft spi2_mosi, i2s2_sd, tim1_ch3n, tim15_ch1n, tim15_ch2 wkup7, rtc_refin k9 55 - - - - pd8 i/o ft usart3_tx - k8 56 - - - - pd9 i/o ft usart3_rx - j12 57 - - - - pd10 i/o ft usart3_ck - j11 58 - - - - pd11 i/o ft usart3_cts - table 13. stm32f091xb/xc pin definitions (continued) pin numbers pin name (function after reset) pin typ e i/o structure notes pin functions ufbga100 lqfp100 ufbga64 lqfp64 wlcsp64 lqfp48/ufqfpn48 alternate functions additional functions
pinouts and pin descriptions stm32f091xb stm32f091xc 40/129 docid026284 rev 1 j10 59 - - - - pd12 i/o ft usart3_rts, tsc_g8_io1, usart8_ck_rts - h12 60 - - - - pd13 i/o ft tsc_g8_io2, usart8_tx - h11 61 - - - - pd14 i/o ft tsc_g8_io3, usart8_rx - h10 62 - - - - pd15 i/o ft tsc_g8_io4, crs_sync, usart7_ck_rts - e12 63 f6 37 e1 - pc6 i/o ft (3) tim3_ch1, usart7_tx - e11 64 e7 38 d1 - pc7 i/o ft (3) tim3_ch2, usart7_rx - e10 65 e8 39 e2 - pc8 i/o ft (3) tim3_ch3, usart8_tx - d12 66 d8 40 e3 - pc9 i/o ft (3) tim3_ch4, usart8_rx - d11 67 d7 41 d2 29 pa8 i/o ft (3) usart1_ck, tim1_ch1, eventout, mco, crs_sync - d10 68 c7 42 c1 30 pa9 i/o ft (3) usart1_tx, tim1_ch2, tim15_bkin, tsc_g4_io1, i2c1_scl mco c12 69 c6 43 c2 31 pa10 i/o ft (3) usart1_rx, tim1_ch3, tim17_bkin, tsc_g4_io2, i2c1_sda - b12 70 c8 44 d3 32 pa11 i/o ft (3) can_rx, usart1_cts, tim1_ch4, comp1_out, tsc_g4_io3, eventout, i2c2_scl - a12 71 b8 45 b1 33 pa12 i/o ft (3) can_tx, usart1_rts, tim1_etr, comp2_out, tsc_g4_io4, eventout, i2c2_sda - a11 72 a8 46 c3 34 pa13 i/o ft (3) (4) ir_out, swdio - c11 73 - - - - pf6 i/o ft (3) -- f11 74 d6 47 b2 35 vss s - ground g11 75 e6 48 a1 36 vddio2 s - digital power supply table 13. stm32f091xb/xc pin definitions (continued) pin numbers pin name (function after reset) pin typ e i/o structure notes pin functions ufbga100 lqfp100 ufbga64 lqfp64 wlcsp64 lqfp48/ufqfpn48 alternate functions additional functions
docid026284 rev 1 41/129 stm32f091xb stm32f091xc pinouts and pin descriptions 42 a10 76 a7 49 b3 37 pa14 i/o ft (3) (4) usart2_tx, swclk - a9 77 a6 50 a2 38 pa15 i/o ft (3) spi1_nss, i2s1_ws, usart2_rx, usart4_rts, tim2_ch1_etr, eventout - b11 78 b7 51 a3 - pc10 i/o ft (3) usart3_tx, usart4_tx - c10 79 b6 52 c4 - pc11 i/o ft (3) usart3_rx, usart4_rx - b10 80 c5 53 b4 - pc12 i/o ft (3) usart3_ck, usart4_ck, usart5_tx - c9 81 - - - - pd0 i/o ft (3) spi2_nss, i2s2_ws, can_rx - b9 82 - - - - pd1 i/o ft (3) spi2_sck, i2s2_ck can_tx - c8 83 b5 54 a4 - pd2 i/o ft (3) usart3_rts, tim3_etr, usart5_rx - b8 84 - - - - pd3 i/o ft spi2_miso, i2s2_mck, usart2_cts - b7 85 - - - - pd4 i/o ft spi2_mosi, i2s2_sd, usart2_rts - a6 86 - - - - pd5 i/o ft usart2_tx - b6 87 - - - - pd6 i/o ft usart2_rx - a5 88 - - - - pd7 i/o ft usart2_ck - a8 89 a5 55 d4 39 pb3 i/o ft spi1_sck, i2s1_ck, tim2_ch2, tsc_g5_io1, eventout, usart5_tx - a7 90 a4 56 d5 40 pb4 i/o ft spi1_miso, i2s1_mck, tim17_bkin, tim3_ch1, tsc_g5_io2, eventout, usart5_rx - table 13. stm32f091xb/xc pin definitions (continued) pin numbers pin name (function after reset) pin typ e i/o structure notes pin functions ufbga100 lqfp100 ufbga64 lqfp64 wlcsp64 lqfp48/ufqfpn48 alternate functions additional functions
pinouts and pin descriptions stm32f091xb stm32f091xc 42/129 docid026284 rev 1 c5 91 c4 57 c5 41 pb5 i/o ft spi1_mosi, i2s1_sd, i2c1_smba, tim16_bkin, tim3_ch2, usart5_ck_rts wkup6 b5 92 d3 58 a5 42 pb6 i/o ftf i2c1_scl, usart1_tx, tim16_ch1n, tsc_g5_i03 - b4 93 c3 59 b5 43 pb7 i/o ftf i2c1_sda, usart1_rx, usart4_cts, tim17_ch1n, tsc_g5_io4 - a4 94 b4 60 c6 44 pf11-boot0 i/o ft - boot memory selection a3 95 b3 61 a6 45 pb8 i/o ftf i2c1_scl, cec, tim16_ch1, tsc_sync, can_rx - b3 96 a3 62 b6 46 pb9 i/o ftf spi2_nss, i2s2_ws, i2c1_sda, ir_out, tim17_ch1, eventout, can_tx - c3 97 - - - - pe0 i/o ft eventout, tim16_ch1 - a2 98 - - - - pe1 i/o ft eventout, tim17_ch1 - d3 99 d4 63 a7 47 vss s - ground c4 100 e4 64 a8 48 vdd s - digital power supply 1. pc13, pc14 and pc15 are supplied through the power switch. since the switch only sinks a limited amount of current (3 ma), the use of gpios pc13 to pc15 in output mode is limited: - the speed should not exceed 2 mhz with a maximum load of 30 pf. - these gpios must not be used as current sources (e.g. to drive an led). 2. after the first rtc domain power-up, pc13, pc14 and pc15 operate as gpios. their function then depends on the content of the rtc registers which are not reset by the system reset. for details on how to manage these gpios, refer to the rtc domain and rtc register descriptions in the reference manual. 3. pc6, pc7, pc8, pc9, pa8, pa9, pa10, pa11, pa12, pa13, pf6, pa14, pa15, pc10, pc11, pc12, pd0, pd1 and pd2 i/os are supplied by vddio2 4. after reset, these pins are configured as swdio and swclk alternate functions, and the internal pull-up on the swdio pin and the internal pull-down on the swclk pin are activated. table 13. stm32f091xb/xc pin definitions (continued) pin numbers pin name (function after reset) pin typ e i/o structure notes pin functions ufbga100 lqfp100 ufbga64 lqfp64 wlcsp64 lqfp48/ufqfpn48 alternate functions additional functions
stm32f091xb stm32f091xc 43/129 docid026284 rev 1 table 14. alternate functions selected through gpioa_afr registers for port a pin name af0 af1 af2 af3 af4 af5 af6 af7 pa0 - usart2_cts tim2_ch1_etr tsc_g1_io1 usart4_tx - - comp1_out pa1 eventout usart2_rts tim2_ch2 tsc_g1_io2 usart4_rx tim15_ch1n - - pa2 tim15_ch1 usart2_tx tim2_ch3 tsc_g1_io3 - - - comp2_out pa3 tim15_ch2 usart2_rx tim2_ch4 tsc_g1_io4 - - - - pa4 spi1_nss, i2s1_ws usart2_ck - tsc_g2_io1 tim14_ch1 usart6_tx - - pa5 spi1_sck, i2s1_ck cec tim2_ch1_etr tsc_g2_io2 - usart6_rx - - pa6 spi1_miso, i2s1_mck tim3_ch1 tim1_bkin tsc_g2_io3 usart3_cts tim16_ch1 eventout comp1_out pa7 spi1_mosi, i2s1_sd tim3_ch2 tim1_ch1n tsc_g2_io4 tim14_ch1 tim17_ch1 eventout comp2_out pa8 mco usart1_ck tim1_ch1 eventout crs_sync - - - pa9 tim15_bkin usart1_tx tim1_ch2 tsc_g4_io1 i2c1_scl mco - - pa10 tim17_bkin usart1_rx tim1_ch3 tsc_g4_io2 i2c1_sda - - - pa11 eventout usart1_cts tim1_ch4 tsc_g4_io3 can_rx i2c2_scl - comp1_out pa12 eventout usart1_rts tim1_etr tsc_g4_io4 can_tx i2c2_sda - comp2_out pa13 swdio ir_out - - - - - - pa14 swclk usart2_tx - - - - - - pa15 spi1_nss, i2s1_ws usart2_rx tim2_ch1_etr eventout usart4_rts - - -
stm32f091xb stm32f091xc docid026284 rev 1 44/129 table 15. alternate functions selected through gpiob_afr registers for port b pin name af0 af1 af2 af3 af4 af5 pb0 eventout tim3_ch3 tim1_ch2n tsc_g3_io2 usart3_ck - pb1 tim14_ch1 tim3_ch4 tim1_ch3n tsc_g3_io3 usart3_rts - pb2 - - - tsc_g3_io4 - - pb3 spi1_sck, i2s1_ck eventout tim2_ch2 tsc_g5_io1 usart5_tx - pb4 spi1_miso, i2s1_mck tim3_ch1 eventout tsc_g5_io2 usart5_rx tim17_bkin pb5 spi1_mosi, i2s1_sd tim3_ch2 tim16_bkin i2c1_smba usart5_ck_rts - pb6 usart1_tx i2c1_scl tim16_ch1n tsc_g5_io3 - - pb7 usart1_rx i2c1_sda tim17_ch1n tsc_g5_io4 usart4_cts - pb8 cec i2c1_scl tim16_ch1 tsc_sync can_rx- - pb9 ir_out i2c1_sda tim17_ch1 eventout can_tx- spi2_nss, i2s2_ws pb10 cec i2c2_scl tim2_ch3 tsc_sync usart3_tx spi2_sck, i2s2_ck pb11 eventout i2c2_sda tim2_ch4 tsc_g6_io1 usart3_rx - pb12 spi2_nss, i2s2_ws eventout tim1_bkin tsc_g6_io2 usart3_ck tim15_bkin pb13 spi2_sck, i2s2_ck - tim1_ch1n tsc_g6_io3 usart3_cts i2c2_scl pb14 spi2_miso, i2s2_mck tim15_ch1 tim1_ch2n tsc_g6_io4 usart3_rts i2c2_sda pb15 spi2_mosi, i2s2_sd tim15_ch2 tim1_ch3n tim15_ch1n - -
docid026284 rev 1 45/129 stm32f091xb stm32f091xc 46 table 16. alternate functions selected through gpioc_afr registers for port c pin name af0 af1 af2 pc0 eventout usart7_tx usart6_tx pc1 eventout usart7_rx usart6_rx pc2 eventout spi2_miso, i2s2_mck usart8_tx pc3 eventout spi2_mosi, i2s2_sd usart8_rx pc4 eventout usart3_tx - pc5 tsc_g3_io1 usart3_rx - pc6 tim3_ch1 usart7_tx - pc7 tim3_ch2 usart7_rx - pc8 tim3_ch3 usart8_tx - pc9 tim3_ch4 usart8_rx - pc10 usart4_tx usart3_tx - pc11 usart4_rx usart3_rx - pc12 usart4_ck usart3_ck usart5_tx pc13 - - - pc14 - - - pc15 - - - table 17. alternate functions selected through gpiod_afr registers for port d pin name af0 af1 af2 pd0 can_rx spi2_nss, i2s2_ws - pd1 can_tx spi2_sck, i2s2_ck - pd2 tim3_etr usart3_rts usart5_rx pd3 usart2_cts spi2_miso, i2s2_mck - pd4 usart2_rts spi2_mosi, i2s2_sd - pd5 usart2_tx - - pd6 usart2_rx - - pd7 usart2_ck - - pd8 usart3_tx - - pd9 usart3_rx - - pd10 usart3_ck - - pd11 usart3_cts - - pd12 usart3_rts tsc_g8_io1 usart8_ck_rts pd13 usart8_tx tsc_g8_io2 - pd14 usart8_rx tsc_g8_io3 - pd15 crs_sync tsc_g8_io4 usart7_ck_rts
stm32f091xb stm32f091xc 46/129 docid026284 rev 1 table 18. alternate functions selected through gpioe_afr registers for port e pin name af0 af1 pe0 tim16_ch1 eventout pe1 tim17_ch1 eventout pe2 tim3_etr tsc_g7_io1 pe3 tim3_ch1 tsc_g7_io2 pe4 tim3_ch2 tsc_g7_io3 pe5 tim3_ch3 tsc_g7_io4 pe6 tim3_ch4 - pe7 tim1_etr usart5_ck_rts pe8 tim1_ch1n usart4_tx pe9 tim1_ch1 usart4_rx pe10 tim1_ch2n usart5_tx pe11 tim1_ch2 usart5_rx pe12 tim1_ch3n spi1_nss, i2s1_ws pe13 tim1_ch3 spi1_sck, i2s1_ck pe14 tim1_ch4 spi1_miso, i2s1_mck pe15 tim1_bkin spi1_mosi, i2s1_sd table 19. alternate functions selected through gpiof_afr registers for port f pin name af0 af1 af2 pf0 crs_sync i2c1_sda - pf1 - i2c1_scl - pf2 eventout usart7_tx usart7_ck_rts pf3 eventout usart7_rx usart6_ck_rts pf4 eventout - - pf5 eventout - - pf6 - - - pf9 tim15_ch1 usart6_tx - pf10 tim15_ch2 usart6_rx -
docid026284 rev 1 47/129 stm32f091xb stm32f091xc memory mapping 50 5 memory mapping figure 10. stm32f091xb/xc memory map 5hvhuyhg $+%         [)))))))) 3hulskhudov 65$0 )odvkphpru\ 5hvhuyhg 6\vwhpphpru\ 2swlrqe\whv  &ruwh[ 0  ,qwhuqdo  3hulskhudov [( 069 )odvkv\vwhpphpru\ ru65$0ghshqglqjrq %227frqiljxudwlrq [ [( [& [$ [ [ [ [ [ [ [ [)))& [)))) [))))))) [ 5hvhuyhg &2'( $3% $3% 5hvhuyhg [ [ [ [ 5hvhuyhg [ $+% [ uhvhuyhg [)) [))
memory mapping stm32f091xb stm32f091xc 48/129 docid026284 rev 1 table 20. stm32f091xb/xc peripheral register boundary addresses bus boundary address size peripheral 0x4800 1800 - 0x5fff ffff ~384 mb reserved ahb2 0x4800 1400 - 0x4800 17ff 1 kb gpiof 0x4800 1000 - 0x4800 13ff 1 kb gpioe 0x4800 0c00 - 0x4800 0fff 1 kb gpiod 0x4800 0800 - 0x4800 0bff 1 kb gpioc 0x4800 0400 - 0x4800 07ff 1 kb gpiob 0x4800 0000 - 0x4800 03ff 1 kb gpioa 0x4002 4400 - 0x47ff ffff ~128 mb reserved ahb1 0x4002 4000 - 0x4002 43ff 1 kb tsc 0x4002 3400 - 0x4002 3fff 3 kb reserved 0x4002 3000 - 0x4002 33ff 1 kb crc 0x4002 2400 - 0x4002 2fff 3 kb reserved 0x4002 2000 - 0x4002 23ff 1 kb flash interface 0x4002 1400 - 0x4002 1fff 3 kb reserved 0x4002 1000 - 0x4002 13ff 1 kb rcc 0x4002 0400 - 0x4002 0fff 3 kb reserved 0x4002 0000 - 0x4002 03ff 1 kb dma 0x4001 8000 - 0x4001 ffff 32 kb reserved
docid026284 rev 1 49/129 stm32f091xb stm32f091xc memory mapping 50 apb 0x4001 5c00 - 0x4001 7fff 9 kb reserved 0x4001 5800 - 0x4001 5bff 1 kb dbgmcu 0x4001 4c00 - 0x4001 57ff 3 kb reserved 0x4001 4800 - 0x4001 4bff 1 kb tim17 0x4001 4400 - 0x4001 47ff 1 kb tim16 0x4001 4000 - 0x4001 43ff 1 kb tim15 0x4001 3c00 - 0x4001 3fff 1 kb reserved 0x4001 3800 - 0x4001 3bff 1 kb usart1 0x4001 3400 - 0x4001 37ff 1 kb reserved 0x4001 3000 - 0x4001 33ff 1 kb spi1/i2s1 0x4001 2c00 - 0x4001 2fff 1 kb tim1 0x4001 2800 - 0x4001 2bff 1 kb reserved 0x4001 2400 - 0x4001 27ff 1 kb adc 0x4001 2000 - 0x4001 23ff 1 kb reserved 0x4001 1c00 ? 0x4001 1fff 1 kb usart8 0x4001 1800 ? 0x4001 1bff 1 kb usart7 0x4001 1400 ? 0x4001 17ff 1 kb usart6 0x4001 0800 - 0x4001 13ff 3 kb reserved 0x4001 0400 - 0x4001 07ff 1 kb exti 0x4001 0000 - 0x4001 03ff 1 kb syscfg + comp 0x4000 8000 - 0x4000 ffff 32 kb reserved table 20. stm32f091xb/xc peripheral register boundary addresses (continued) bus boundary address size peripheral
memory mapping stm32f091xb stm32f091xc 50/129 docid026284 rev 1 apb 0x4000 7c00 - 0x4000 7fff 1 kb reserved 0x4000 7800 - 0x4000 7bff 1 kb cec 0x4000 7400 - 0x4000 77ff 1 kb dac 0x4000 7000 - 0x4000 73ff 1 kb pwr 0x4000 6c00 - 0x4000 6fff 1 kb crs 0x4000 6800 - 0x4000 6bff 1 kb reserved 0x4000 6400 - 0x4000 67ff 1 kb bxcan 0x4000 6100 - 0x4000 63ff 768 b reserved 0x4000 6000 - 0x4000 60ff 256 b can ram 0x4000 5c00 - 0x4000 5fff 1 kb reserved 0x4000 5800 - 0x4000 5bff 1 kb i2c2 0x4000 5400 - 0x4000 57ff 1 kb i2c1 0x4000 5000 - 0x4000 53ff 1 kb usart5 0x4000 4c00 - 0x4000 4fff 1 kb usart4 0x4000 4800 - 0x4000 4bff 1 kb usart3 0x4000 4400 - 0x4000 47ff 1 kb usart2 0x4000 3c00 - 0x4000 43ff 2 kb reserved 0x4000 3800 - 0x4000 3bff 1 kb spi2 0x4000 3400 - 0x4000 37ff 1 kb reserved 0x4000 3000 - 0x4000 33ff 1 kb iwdg 0x4000 2c00 - 0x4000 2fff 1 kb wwdg 0x4000 2800 - 0x4000 2bff 1 kb rtc 0x4000 2400 - 0x4000 27ff 1 kb reserved 0x4000 2000 - 0x4000 23ff 1 kb tim14 0x4000 1800 - 0x4000 1fff 2 kb reserved 0x4000 1400 - 0x4000 17ff 1 kb tim7 0x4000 1000 - 0x4000 13ff 1 kb tim6 0x4000 0800 - 0x4000 0fff 2 kb reserved 0x4000 0400 - 0x4000 07ff 1 kb tim3 0x4000 0000 - 0x4000 03ff 1 kb tim2 table 20. stm32f091xb/xc peripheral register boundary addresses (continued) bus boundary address size peripheral
docid026284 rev 1 51/129 stm32f091xb stm32f091xc electrical characteristics 104 6 electrical characteristics 6.1 parameter conditions unless otherwise specified, all voltages are referenced to v ss . 6.1.1 minimum and maximum values unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at t a = 25 c and t a = t a max (given by the selected temperature range). data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean 3 ). 6.1.2 typical values unless otherwise specified, typical data are based on t a = 25 c, v dd = v dda = 3.3 v. they are given only as design guidelines and are not tested. typical adc accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean 2 ) . 6.1.3 typical curves unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 loading capacitor the loading conditions used for pin parameter measurement are shown in figure 11 . 6.1.5 pin input voltage the input voltage measurement on a pin of the device is described in figure 12 . figure 11. pin loading conditions figure 12. pin input voltage 069 & s) 0&8slq 069 0&8slq 9 ,1
electrical characteristics stm32f091xb stm32f091xc 52/129 docid026284 rev 1 6.1.6 power supply scheme figure 13. power supply scheme caution: each power supply pair (v dd /v ss , v dda /v ssa etc.) must be decoupled with filtering ceramic capacitors as shown above. these capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the pcb to ensure the good functionality of the device. 9 '',2 9 '' 06y9 /hyhovkliwhu ,2 orjlf .huqhoorjlf &38'ljlwdo 0hprulhv %dfnxsflufxlwu\ /6(57& %dfnxsuhjlvwhuv ,1 287 5hjxodwru *3,2v 9 ,1 287 *3,2v [q) [?) q) /hyhovkliwhu ,2 orjlf ?) 9 '',2 9 66 [9 66 [9 '' 9 %$7 9 &25( 3rzhuvzlwfk 9 '',2 9 '',2 $'& '$& $qdorj 5&v3//? 9 5() 9 5() 9 ''$ q) ?) 9 ''$ 9 66$
docid026284 rev 1 53/129 stm32f091xb stm32f091xc electrical characteristics 104 6.1.7 current consumption measurement figure 14. current consumption measurement scheme 069 9 %$7 9 '' 9 ''$ , '' , ''$ , ''b9%$7 9 '',2
electrical characteristics stm32f091xb stm32f091xc 54/129 docid026284 rev 1 6.2 absolute maximum ratings stresses above the absolute maximum ratings listed in table 21: voltage characteristics , table 22: current characteristics and table 23: thermal characteristics may cause permanent damage to the device. these are stress ratings only and functional operation of the device at these conditions is not implied. exposure to maximum rating conditions for extended periods may affect device reliability. table 21. voltage characteristics (1) 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. symbol ratings min max unit v dd ?v ss external main supply voltage -0.3 4.0 v v ddio2 ?v ss external i/o supply voltage -0.3 4.0 v v dda ?v ss external analog supply voltage -0.3 4.0 v v dd ?v dda allowed voltage difference for v dd > v dda - 0.4 v v bat ?v ss external backup supply voltage -0.3 4.0 v v in (2) 2. v in maximum must always be respected. refer to for the maximum allowed injected current values. input voltage on ft and ftf pins v ss ? 0.3 v ddiox + 4.0 v input voltage on tta pins v ss ? 0.3 4.0 v input voltage on any other pin v ss ? 0.3 4.0 v | v ddx | variations between different v dd power pins - 50 mv |v ssx ? v ss | variations between all the different ground pins -50mv v esd(hbm) electrostatic discharge voltage (human body model) see section 6.3.12: electrical sensitivity characteristics
docid026284 rev 1 55/129 stm32f091xb stm32f091xc electrical characteristics 104 table 22. current characteristics symbol ratings max. unit i vdd total current into sum of all vdd power lines (source) (1) 120 ma i vss total current out of sum of all vss ground lines (sink) (1) -120 i vdd(pin) maximum current into each vdd power pin (source) (1) 100 i vss(pin) maximum current out of each vss ground pin (sink) (1) -100 i io(pin) output current sunk by any i/o and control pin 25 output current source by any i/o and control pin -25 i io(pin) total output current sunk by sum of all i/os and control pins (2) 80 total output current sourced by sum of all i/os and control pins (2) -80 total output current sourced by sum of all i/os supplied by vddio2 -40 i inj(pin) (3) injected current on ft and ftf pins -5/+0 (4) injected current on tc and rst pin 5 injected current on tta pins (5) 5 i inj(pin) total injected current (sum of all i/o and control pins) (6) 25 1. all main power (vdd, vdda) and ground (vss, vssa) pins must always be connected to the external power supply, in the permitted range. 2. this current consumption must be correctly distributed over all i/os and control pins. the total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count qfp packages. 3. a positive injection is induced by v in > v ddiox while a negative injection is induced by v in < v ss . i inj(pin) must never be exceeded. refer to table 21: voltage characteristics for the maximum allowed input voltage values. 4. positive injection is not possible on these i/os and does not occur for input voltages lower than the specified maximum value. 5. on these i/os, a positive injection is induced by v in > v dda . negative injection disturbs the analog performance of the device. see note (2) below table 59: adc accuracy . 6. when several inputs are submitted to a current injection, the maximum i inj(pin) is the absolute sum of the positive and negative injected currents (instantaneous values). table 23. thermal characteristics symbol ratings value unit t stg storage temperature range ?65 to +150 c t j maximum junction temperature 150 c
electrical characteristics stm32f091xb stm32f091xc 56/129 docid026284 rev 1 6.3 operating conditions 6.3.1 general operating conditions table 24. general operating conditions symbol parameter conditions min max unit f hclk internal ahb clock frequency 0 48 mhz f pclk internal apb clock frequency 0 48 v dd standard operating voltage 2.0 3.6 v v ddio2 i/o supply voltage must not be supplied if v dd is not present 1.65 3.6 v v dda analog operating voltage (adc and dac not used) must have a potential equal to or higher than v dd v dd 3.6 v analog operating voltage (adc and dac used) 2.4 3.6 v bat backup operating voltage 1.65 3.6 v v in i/o input voltage tc and rst i/o -0.3 v ddiox +0.3 v tta i/o -0.3 v dda +0.3 (1) ft and ftf i/o -0.3 5.5 (1) p d power dissipation at t a = 85 c for suffix 6 or t a = 105 c for suffix 7 (2) ufbga100 - 364 mw lqfp100 - 476 lqfp64 - 455 wlcsp64 - 377 ufbga64 - 308 lqfp48 - 370 ufqfpn48 - 625 t a ambient temperature for the suffix 6 version maximum power dissipation ?40 85 c low power dissipation (3) ?40 105 ambient temperature for the suffix 7 version maximum power dissipation ?40 105 c low power dissipation (3) ?40 125 t j junction temperature range suffix 6 version ?40 105 c suffix 7 version ?40 125 1. to sustain a voltage higher than v ddiox +0.3 v, the internal pull-up/pull-down resistors must be disabled. 2. if t a is lower, higher p d values are allowed as long as t j does not exceed t jmax . see section 7.2: thermal characteristics 3. in low power dissipation state, t a can be extended to this range as long as t j does not exceed t jmax (see section 7.2: thermal characteristics ).
docid026284 rev 1 57/129 stm32f091xb stm32f091xc electrical characteristics 104 6.3.2 operating conditions at power-up / power-down the parameters given in table 25 are derived from tests performed under the ambient temperature condition summarized in table 24 . 6.3.3 embedded reset and power control block characteristics the parameters given in table 26 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in table 24: general operating conditions . table 25. operating conditions at power-up / power-down symbol parameter conditions min max unit t vdd v dd rise time rate - 0 s/v v dd fall time rate 20 t vdda v dda rise time rate - 0 v dda fall time rate 20 table 26. embedded reset and power control block characteristics symbol parameter conditions min typ max unit v por/pdr (1) 1. the pdr detector monitors v dd and also v dda (if kept enabled in the option bytes). the por detector monitors only v dd . power on/power down reset threshold falling edge (2) 2. the product behavior is guaranteed by design down to the minimum v por/pdr value. 1.80 1.88 1.96 (3) 3. data based on characterization results, not tested in production. v rising edge 1.84 (3) 1.92 2.00 v v pdrhyst pdr hysteresis - 40 - mv t rsttempo (4) 4. guaranteed by design, not tested in production. reset temporization 1.50 2.50 4.50 ms table 27. programmable voltage detector characteristics symbol parameter conditions min typ max unit v pvd0 pvd threshold 0 rising edge 2.1 2.18 2.26 v falling edge 2 2.08 2.16 v v pvd1 pvd threshold 1 rising edge 2.19 2.28 2.37 v falling edge 2.09 2.18 2.27 v v pvd2 pvd threshold 2 rising edge 2.28 2.38 2.48 v falling edge 2.18 2.28 2.38 v v pvd3 pvd threshold 3 rising edge 2.38 2.48 2.58 v falling edge 2.28 2.38 2.48 v
electrical characteristics stm32f091xb stm32f091xc 58/129 docid026284 rev 1 6.3.4 embedded reference voltage the parameters given in table 28 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in table 24: general operating conditions . v pvd4 pvd threshold 4 rising edge 2.47 2.58 2.69 v falling edge 2.37 2.48 2.59 v v pvd5 pvd threshold 5 rising edge 2.57 2.68 2.79 v falling edge 2.47 2.58 2.69 v v pvd6 pvd threshold 6 rising edge 2.66 2.78 2.9 v falling edge 2.56 2.68 2.8 v v pvd7 pvd threshold 7 rising edge 2.76 2.88 3 v falling edge 2.66 2.78 2.9 v v pvdhyst (1) pvd hysteresis - 100 - mv i dd(pvd) pvd current consumption - 0.15 0.26 (1) a 1. guaranteed by design, not tested in production. table 27. programmable voltage detector characteristics (continued) symbol parameter conditions min typ max unit table 28. embedded internal reference voltage symbol parameter conditions min typ max unit v refint internal reference voltage ?40 c < t a < +105 c 1.16 1.2 1.25 v ?40 c < t a < +85 c 1.16 1.2 1.24 (1) 1. data based on characterization results, not tested in production. v t s_vrefint adc sampling time when reading the internal reference voltage 4 (2) 2. guaranteed by design, not tested in production. -- s v refint internal reference voltage spread over the temperature range v dda = 3 v - - 10 (2) mv t coeff temperature coefficient - 100 (2) - 100 (2) ppm/c
docid026284 rev 1 59/129 stm32f091xb stm32f091xc electrical characteristics 104 6.3.5 supply current characteristics the current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, i/o pin loading, device software configuration, operating frequencies, i/o pin switching rate, program location in memory and executed binary code. the current consumption is measured as described in figure 14: current consumption measurement scheme . all run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to coremark code. typical and maximum current consumption the mcu is placed under the following conditions: ? all i/o pins are in analog input mode ? all peripherals are disabled except when explicitly mentioned ? the flash memory access time is adjusted to the f hclk frequency: ? 0 wait state and prefetch off from 0 to 24 mhz ? 1 wait state and prefetch on above 24 mhz ? when the peripherals are enabled f pclk = f hclk the parameters given in table 29 to table 32 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 24: general operating conditions .
electrical characteristics stm32f091xb stm32f091xc 60/129 docid026284 rev 1 table 29. typical and maximum current consumption from v dd supply at v dd = 3.6 v symbol parameter conditions f hclk all peripherals enabled all peripherals disabled unit typ max @ t a (1) typ max @ t a (1) 25 c 85 c 105 c 25 c 85 c 105 c i dd supply current in run mode, code executing from flash hsi48 48 mhz 26.9 29.5 30.3 30.6 14.7 16.1 16.3 16.4 ma hse bypass, pll on 48 mhz 26.7 29.2 30.1 30.3 14.6 16.0 16.2 16.2 32 mhz 18.0 20.4 20.8 21.0 10.1 10.8 10.9 11.0 24 mhz 14.0 15.7 16.1 16.2 8.5 9.0 9.2 9.4 hse bypass, pll off 8 mhz 4.8 5.3 5.5 5.9 3.0 3.2 3.3 3.5 1 mhz 1.3 1.5 1.6 1.9 1.0 1.1 1.2 1.4 hsi clock, pll on 48 mhz 26.8 29.4 30.2 30.5 14.7 16.1 16.3 16.3 32 mhz 18.1 20.5 20.9 21.2 10.2 10.9 11.0 11.1 24 mhz 14.1 15.9 16.2 16.4 8.6 9.1 9.2 9.5 hsi clock, pll off 8 mhz 4.9 5.4 5.6 5.9 3.1 3.2 3.4 3.5 supply current in run mode, code executing from ram hsi48 48 mhz 26.3 28.7 29.5 29.7 14.0 15.3 15.5 15.7 hse bypass, pll on 48 mhz 26.0 28.4 29.2 29.4 13.9 15.2 15.4 15.6 32 mhz 17.4 19.5 19.9 20.1 9.6 10.3 10.4 10.5 24 mhz 13.3 15.1 15.5 15.6 7.6 8.2 8.4 8.5 hse bypass, pll off 8 mhz 4.4 4.9 5.1 5.3 2.4 2.6 2.8 2.9 1 mhz 0.9 0.9 1.0 1.2 0.5 0.6 0.7 0.8 hsi clock, pll on 48 mhz 26.1 28.5 29.3 29.5 13.9 15.3 15.5 15.6 32 mhz 17.5 19.6 20.0 20.3 9.7 10.4 10.5 10.6 24 mhz 13.3 15.3 15.7 15.8 7.7 8.2 8.5 8.6 hsi clock, pll off 8 mhz 4.6 5.0 5.2 5.4 2.5 2.7 2.9 3.0 supply current in sleep mode hsi48 48 mhz 17.0 18.7 19.1 19.4 3.2 3.5 3.6 3.7 ma hse bypass, pll on 48 mhz 16.9 18.5 19.0 19.3 3.1 3.5 3.5 3.6 32 mhz 11.3 12.6 12.8 13.1 2.2 2.4 2.5 2.6 24 mhz 8.6 9.8 10.0 10.1 1.7 1.9 2.0 2.0 hse bypass, pll off 8 mhz 2.9 3.2 3.4 3.7 0.8 0.9 0.9 1.0 1 mhz 0.4 0.6 0.6 0.7 0.3 0.4 0.4 0.5 hsi clock, pll on 48 mhz 17.0 18.6 19.0 19.4 3.1 3.5 3.6 3.7 32 mhz 11.4 12.7 13.0 13.2 2.3 2.5 2.6 2.7 24 mhz 8.7 9.9 10.1 10.2 1.8 2.0 2.1 2.2 hsi clock, pll off 8 mhz 3.0 3.3 3.5 3.8 0.8 0.9 1.0 1.1
docid026284 rev 1 61/129 stm32f091xb stm32f091xc electrical characteristics 104 1. data based on characterization results, not tested in production unless otherwise specified. table 30. typical and maximum current consumption from the v dda supply symbol para-meter conditions (1) f hclk v dda = 2.4 v v dda = 3.6 v unit typ max @ t a (2) typ max @ t a (2) 25 c 85 c 105 c 25 c 85 c 105 c i dda supply current in run or sleep mode, code executing from flash or ram hsi48 48 mhz 312 333 338 347 316 334 341 350 a hse bypass, pll on 48 mhz 147 168 178 181 160 181 192 197 32 mhz 101 119 125 127 109 127 135 138 24 mhz 80 96 98 100 87 101 106 109 hse bypass, pll off 8 mhz 2.8 3.5 3.7 3.9 3.7 4.3 4.6 4.7 1 mhz 2.7 3.2 3.5 3.8 3.3 3.9 4.4 4.7 hsi clock, pll on 48 mhz 214 243 254 259 235 262 275 281 32 mhz 166 193 203 204 185 207 216 220 24 mhz 144 171 177 178 161 180 187 190 hsi clock, pll off 8 mhz 65 83 85 86 77 90 92 93 1. current consumption from the v dda supply is independent of whether the digital peripherals are enabled or disabled, being in run or sleep mode or executing from flash or ram. furthermore, when the pll is off, i dda is independent from the frequency. 2. data based on characterization results, not tested in production unless otherwise specified.
electrical characteristics stm32f091xb stm32f091xc 62/129 docid026284 rev 1 table 31. typical and maximum consumption in stop and standby modes sym- bol para- meter conditions typ @v dd (v dd = v dda ) max (1) unit 2.0 v 2.4 v 2.7 v 3.0 v 3.3 v 3.6 v t a = 25 c t a = 85 c t a = 105 c i dd supply current in stop mode regulator in run mode, all oscillators off 14.6 14.8 14.9 15.1 15.4 15.8 18 51 97 a regulator in low- power mode, all oscillators off 3.3 3.4 3.6 3.8 4.1 4.4 11 53 106 supply current in standby mode lsi on and iwdg on 0.9 1.0 1.1 1.2 1.3 1.4 2.3 2.7 3.6 lsi off and iwdg off 0.6 0.7 0.8 0.9 1.0 1.1 1.9 2.3 3.0 i dda supply current in stop mode v dda monitoring on regulator in run mode, all oscillators off 1.9 2.0 2.2 2.3 2.4 2.6 3.8 4.2 4.6 regulator in low-power mode, all oscillators off 1.9 2.0 2.2 2.3 2.4 2.6 3.8 4.2 4.6 supply current in standby mode lsi on and iwdg on 2.3 2.5 2.7 2.8 3.0 3.3 3.8 4.2 4.8 lsi off and iwdg off 1.8 1.9 2.0 2.2 2.3 2.5 3.6 3.9 4.2 supply current in stop mode v dda monitoring off regulator in run mode, all oscillators off 1.2 1.2 1.3 1.3 1.4 1.4 - - - regulator in low-power mode, all oscillators off 1.2 1.2 1.3 1.3 1.4 1.4 - - - supply current in standby mode lsi on and iwdg on 1.6 1.7 1.8 1.9 2.0 2.1 - - - lsi off and iwdg off 1.1 1.1 1.1 1.2 1.3 1.3 - - - 1. data based on characterization results, not tested in production unless otherwise specified.
docid026284 rev 1 63/129 stm32f091xb stm32f091xc electrical characteristics 104 table 32. typical and maximum current consumption from the v bat supply symbol parameter conditions typ @ v bat max (1) unit = 1.65 v = 1.8 v = 2.4 v = 2.7 v = 3.3 v = 3.6 v t a = 25 c t a = 85 c t a = 105 c i dd _ vbat rtc domain supply current lse & rtc on; ?xtal mode?: lower driving capability; lsedrv[1:0] = '00' 0.5 0.5 0.6 0.7 0.9 1.0 1.0 1.3 1.8 a lse & rtc on; ?xtal mode? higher driving capability; lsedrv[1:0] = '11' 0.8 0.8 0.9 1.0 1.2 1.3 1.4 1.7 2.2 1. data based on characterization results, not tested in production.
electrical characteristics stm32f091xb stm32f091xc 64/129 docid026284 rev 1 typical current consumption the mcu is placed under the following conditions: ? v dd = v dda = 3.3 v ? all i/o pins are in analog input configuration ? the flash access time is adjusted to f hclk frequency: ? 0 wait state and prefetch off from 0 to 24 mhz ? 1 wait state and prefetch on above 24 mhz ? when the peripherals are enabled, f pclk = f hclk ? pll is used for frequencies greater than 8 mhz ? ahb prescaler of 2, 4, 8 and 16 is used for the frequencies 4 mhz, 2 mhz, 1 mhz and 500 khz respectively table 33. typical current consumption, code executing from flash, running from hse 8 mhz crystal symbol parameter f hclk typical consumption in run mode typical consumption in sleep mode unit peripherals enabled peripherals disabled peripherals enabled peripherals disabled i dd current consumption from v dd supply 48 mhz 26.7 15.1 16.4 3.8 ma 36 mhz 20.4 11.8 12.7 3.3 32 mhz 18.5 11.0 11.4 3.0 24 mhz 14.6 8.7 9.0 2.3 16 mhz 10.2 6.1 6.4 1.8 8 mhz 5.1 3.3 3.2 1.2 4 mhz 3.3 2.2 2.3 1.1 2 mhz 2.2 1.7 1.7 1.1 1 mhz 1.6 1.4 1.4 1.1 500 khz 1.4 1.2 1.2 1.0 i dda current consumption from v dda supply 48 mhz 172 a 36 mhz 131 32 mhz 119 24 mhz 93 16 mhz 67 8 mhz 2.7 4 mhz 2.7 2 mhz 2.7 1 mhz 2.7 500 khz 2.7
docid026284 rev 1 65/129 stm32f091xb stm32f091xc electrical characteristics 104 i/o system current consumption the current consumption of the i/o system has two components: static and dynamic. i/o static current consumption all the i/os used as inputs with pull-up generate current consumption when the pin is externally held low . the value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in table 53: i/o static characteristics. for the output pins, any external pull-down or external load must also be considered to estimate the current consumption. additional i/o current consumption is due to i/os configured as inputs if an intermediate voltage level is externally applied. this current consumption is caused by the input schmitt trigger circuits used to discriminate the input value. unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these i/os in analog mode. this is notably the case of adc input pins which should be configured as analog inputs. caution: any floating input pin can also settle to an intermediate voltage level or switch inadvertently , as a result of external electromagnetic noise. to avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. this can be done either by using pull-up/down resistors or by configuring the pins in output mode. i/o dynamic current consumption in addition to the internal peripheral current consumption measured previously (see table 35: peripheral current consumption), the i/os used by an application also contribute to the current consumption. when an i/o pin switches, it uses the current from the i/o supply voltage to supply the i/o pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: i sw v ddiox f sw c = where i sw is the current sunk by a switching i/o to charge/discharge the capacitive load v ddiox is the i/o supply voltage f sw is the i/o switching frequency c is the total capacitance seen by the i/o pin: c = c int + c ext + c s c s is the pcb board capacitance including the pad pin. the test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.
electrical characteristics stm32f091xb stm32f091xc 66/129 docid026284 rev 1 table 34. switching output i/o current consumption symbol parameter conditions (1) 1. c s = 7 pf (estimated value). i/o toggling frequency (f sw ) typ unit i sw i/o current consumption v ddiox = 3.3 v c =c int 4 mhz 0.07 ma 8 mhz 0.15 16 mhz 0.31 24 mhz 0.53 48 mhz 0.92 v ddiox = 3.3 v c ext = 0 pf c = c int + c ext + c s 4 mhz 0.18 8 mhz 0.37 16 mhz 0.76 24 mhz 1.39 48 mhz 2.188 v ddiox = 3.3 v c ext = 10 pf c = c int + c ext + c s 4 mhz 0.32 8 mhz 0.64 16 mhz 1.25 24 mhz 2.23 48 mhz 4.442 v ddiox = 3.3 v c ext = 22 pf c = c int + c ext + c s 4 mhz 0.49 8 mhz 0.94 16 mhz 2.38 24 mhz 3.99 v ddiox = 3.3 v c ext = 33 pf c = c int + c ext + c s 4 mhz 0.64 8 mhz 1.25 16 mhz 3.24 24 mhz 5.02 v ddiox = 3.3 v c ext = 47 pf c = c int + c ext + c s c = c int 4 mhz 0.81 8 mhz 1.7 16 mhz 3.67 v ddiox = 2.4 v c ext = 47 pf c = c int + c ext + c s c = c int 4 mhz 0.66 8 mhz 1.43 16 mhz 2.45 24 mhz 4.97
docid026284 rev 1 67/129 stm32f091xb stm32f091xc electrical characteristics 104 on-chip peripheral current consumption the current consumption of the on-chip peripherals is given in table 35 . the mcu is placed under the following conditions: ? all i/o pins are in analog mode ? all peripherals are disabled unless otherwise mentioned ? the given value is calculated by measuring the current consumption ? with all peripherals clocked off ? with only one peripheral clocked on ? ambient operating temperature and supply voltage conditions summarized in table 21: voltage characteristics table 35. peripheral current consumption peripheral typical consumption at 25 c unit ahb busmatrix (1) 3.1 a/mhz crc 2.0 dma1 5.5 dma2 5.1 flash interface 15.4 gpioa 5.5 gpiob 5.4 gpioc 3.2 gpiod 3.1 gpioe 4.0 gpiof 2.5 sram 0.8 tsc 5.5 all ahb peripherals 61.0
electrical characteristics stm32f091xb stm32f091xc 68/129 docid026284 rev 1 apb apb-bridge (2) 3.6 a/mhz adc (3) 4.3 can 12.4 cec 0.4 crs 0.0 dac (3) 4.2 dbg (mcu debug support) 0.2 i2c1 2.9 i2c2 2.4 pwr 0.6 spi1 8.8 spi2 7.8 syscfg and comp 1.9 tim1 15.2 tim14 2.6 tim15 8.7 tim16 5.8 tim17 7.0 tim2 16.2 tim3 11.9 tim6 11.8 tim7 2.5 usart1 17.6 usart2 16.3 usart3 16.2 usart4 4.7 usart5 4.4 usart6 5.5 usart7 5.2 usart8 5.1 wwdg 1.1 all apb peripherals 207.2 1. the busmatrix is automatically active when at least one master is on (cpu, dma). 2. the apb bridge is automatically active when at least one peripheral is on on the bus. 3. the power consumption of the analog part (i dda ) of peripherals such as adc, dac, comparators, is not included. refer to the tables of characteristics in the subsequent sections. table 35. peripheral current consumption (continued) peripheral typical consumption at 25 c unit
docid026284 rev 1 69/129 stm32f091xb stm32f091xc electrical characteristics 104 6.3.6 wakeup time from low-power mode the wakeup times given in table 36 are the latency between the event and the execution of the first user instruction. the device goes in low-power mode after the wfe (wait for event) instruction, in the case of a wfi (wait for interruption) instruction, 16 cpu cycles must be added to the following timings due to the interrupt latency in the cortex m0 architecture. the sysclk clock source setting is kept unchanged after wakeup from sleep mode. during wakeup from stop or standby mode, sysclk takes the default setting: hsi 8 mhz. the wakeup source from sleep and stop mode is an exti line configured in event mode. the wakeup source from standby mode is the wkup1 pin (pa0). all timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in table 24: general operating conditions table 36. low-power mode wakeup timings symbol parameter conditions typ @v dd = v dda max unit = 2.0 v = 2.4 v = 2.7 v = 3 v = 3.3 v t wustop wakeup from stop mode regulator in run mode 3.2 3.1 2.9 2.9 2.8 5 s regulator in low power mode 7.0 5.8 5.2 4.9 4.6 9 t wustandby wakeup from standby mode - 60.4 55.6 53.5 52 51 - t wusleep wakeup from sleep mode - 4 sysclk cycles -
electrical characteristics stm32f091xb stm32f091xc 70/129 docid026284 rev 1 6.3.7 external clock source characteristics high-speed external user clock generated from an external source in bypass mode the hse oscillator is switched off and the input pin is a standard gpio. the external clock signal has to respect the i/o characteristics in section 6.3.14 . however, the recommended clock input waveform is shown in figure 15: high-speed external clock source ac timing diagram . figure 15. high-speed external clock source ac timing diagram table 37. high-speed external user clock characteristics symbol parameter (1) 1. guaranteed by design, not tested in production. min typ max unit f hse_ext user external clock source frequency - 8 32 mhz v hseh osc_in input pin high level voltage 0.7 v ddiox -v ddiox v v hsel osc_in input pin low level voltage v ss - 0.3 v ddiox t w(hseh) t w(hsel) osc_in high or low time 15 - - ns t r(hse) t f(hse) osc_in rise or fall time - - 20 069 9 +6(+ w i +6(   7 +6( w w u +6( 9 +6(/ w z +6(+ w z +6(/
docid026284 rev 1 71/129 stm32f091xb stm32f091xc electrical characteristics 104 low-speed external user clock generated from an external source in bypass mode the lse oscillator is switched off and the input pin is a standard gpio. the external clock signal has to respect the i/o characteristics in section 6.3.14 . however, the recommended clock input waveform is shown in figure 16 . figure 16. low-speed external clock source ac timing diagram table 38. low-speed external user clock characteristics symbol parameter (1) 1. guaranteed by design, not tested in production. min typ max unit f lse_ext user external clock source frequency - 32.768 1000 khz v lseh osc32_in input pin high level voltage 0.7 v ddiox -v ddiox v v lsel osc32_in input pin low level voltage v ss - 0.3 v ddiox t w(lseh) t w(lsel) osc32_in high or low time 450 - - ns t r(lse) t f(lse) osc32_in rise or fall time - - 50 069 9 /6(+ w i /6(   7 /6( w w u /6( 9 /6(/ w z /6(+ w z /6(/
electrical characteristics stm32f091xb stm32f091xc 72/129 docid026284 rev 1 high-speed external clock generated from a crystal/ceramic resonator the high-speed external (hse) clock can be supplied with a 4 to 32 mhz crystal/ceramic resonator oscillator. all the information given in this paragraph are based on design simulation results obtained with typical external components specified in table 39 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). for c l1 and c l2 , it is recommended to use high-quality external ceramic capacitors in the 5 pf to 20 pf range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see figure 17 ). c l1 and c l2 are usually the same size. the crystal manufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . pcb and mcu pin capacitance must be included (10 pf can be used as a rough estimate of the combined pin and board capacitance) when sizing c l1 and c l2 . note: for information on selecting the crystal, refer to the application note an2867 ?oscillator design guide for st microcontrollers? available from the st website www.st.com. table 39. hse oscillator characteristics symbol parameter conditions (1) 1. resonator characteristics given by the crystal/ceramic resonator manufacturer. min (2) typ max (2) 2. guaranteed by design, not tested in production. unit f osc_in oscillator frequency 4 8 32 mhz r f feedback resistor - 200 - k i dd hse current consumption during startup (3) 3. this consumption level occurs during the first 2/3 of the t su(hse) startup time - 8.5 ma v dd = 3.3 v, rm = 30 , cl = 10 pf@8 mhz - 0.4 - v dd = 3.3 v, rm = 45 , cl = 10 pf@8 mhz - 0.5 - v dd = 3.3 v, rm = 30 , cl = 5 pf@32 mhz - 0.8 - v dd = 3.3 v, rm = 30 , cl = 10 pf@32 mhz -1- v dd = 3.3 v, rm = 30 , cl = 20 pf@32 mhz - 1.5 - g m oscillator transconductance startup 10 - - ma/v t su(hse) (4) 4. t su(hse) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 mhz oscillation is reached. this value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer startup time v dd is stabilized - 2 - ms
docid026284 rev 1 73/129 stm32f091xb stm32f091xc electrical characteristics 104 figure 17. typical application with an 8 mhz crystal 1. r ext value depends on the crystal characteristics. 069 0+ ] uhvrqdwru 5hvrqdwruzlwk lqwhjudwhgfdsdflwruv %ldv frqwuroohg jdlq 5 (;7  & / & / 26&b,1 26&b287 5 ) i +6(
electrical characteristics stm32f091xb stm32f091xc 74/129 docid026284 rev 1 low-speed external clock generated from a crystal resonator the low-speed external (lse) clock can be supplied with a 32.768 khz crystal resonator oscillator. all the information given in this paragraph are based on design simulation results obtained with typical external components specified in table 40 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). note: for information on selecting the crystal, refer to the application note an2867 ?oscillator design guide for st microcontrollers? available from the st website www.st.com. table 40. lse oscillator characteristics (f lse = 32.768 khz) symbol parameter conditions (1) min (2) typ max (2) unit i dd lse current consumption lsedrv[1:0]=00 lower driving capability - 0.5 0.9 a lsedrv[1:0]= 01 medium low driving capability --1 lsedrv[1:0] = 10 medium high driving capability - - 1.3 lsedrv[1:0]=11 higher driving capability - - 1.6 g m oscillator transconductance lsedrv[1:0]=00 lower driving capability 5- - a/v lsedrv[1:0]= 01 medium low driving capability 8- - lsedrv[1:0] = 10 medium high driving capability 15 - - lsedrv[1:0]=11 higher driving capability 25 - - t su(lse) (3) startup time v ddiox is stabilized - 2 - s 1. refer to the note and caution paragraphs below the table, and to the application note an2867 ?oscillator design guide for st microcontrollers?. 2. guaranteed by design, not tested in production. 3. t su(lse) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 khz oscillation is reached. this value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
docid026284 rev 1 75/129 stm32f091xb stm32f091xc electrical characteristics 104 figure 18. typical application with a 32.768 khz crystal note: an external resistor is not required between osc32_in and osc32_out and it is forbidden to add one. 069 26&b28 7 26&b,1 i /6( & / n+ ] uhvrqdwru & / 5hvrqdwruzlwk lqwhjudwhgfdsdflwruv 'ulyh surjudppdeoh dpsolilhu
electrical characteristics stm32f091xb stm32f091xc 76/129 docid026284 rev 1 6.3.8 internal clock source characteristics the parameters given in table 41 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 24: general operating conditions . the provided curves are characterization results, not tested in production. high-speed internal (hsi) rc oscillator figure 19. hsi oscillator accuracy characterization results table 41. hsi oscillator characteristics (1) 1. v dda = 3.3 v, t a = -40 to 105c unless otherwise specified. symbol parameter conditions min typ max unit f hsi frequency - 8 - mhz trim hsi user trimming step - - 1 (2) 2. guaranteed by design, not tested in production. % acc hsi accuracy of the hsi oscillator t a = -40 to 105c -2.8 (3) 3. data based on characterization results, not tested in production. - 3.8 (3) % t a = -10 to 85c -1.9 (3) - 2.3 (3) t a = 0 to 85c -1.9 (3) -2 (3) t a = 0 to 70c -1.3 - 2 (3) t a = 0 to 55c -1 (3) -2 (3) t a = 25c (4) 4. factory calibrated. -1 - 1                   7$ ?&  069           +6,dffxudf\            0d[ 0lq
docid026284 rev 1 77/129 stm32f091xb stm32f091xc electrical characteristics 104 high-speed internal 14 mhz (hsi14) rc oscillator (dedicated to adc) figure 20. hsi14 oscillator accuracy characterization results table 42. hsi14 oscillator characteristics (1) 1. v dda = 3.3 v, t a = ?40 to 105 c unless otherwise specified. symbol parameter conditions min typ max unit f hsi14 frequency - 14 - mhz trim hsi14 user-trimming step - - 1 (2) 2. guaranteed by design, not tested in production. % ducy (hsi14) duty cycle 45 (2) -55 (2) % acc hsi14 accuracy of the hsi14 oscillator (factory calibrated) t a = ?40 to 105 c ?4.2 (3) 3. data based on characterization results, not tested in production. - 5.1 (3) % t a = ?10 to 85 c ?3.2 (3) - 3.1 (3) % t a = 0 to 70 c ?2.5 (3) - 2.3 (3) % t a = 25 c ?1 - 1 % t su(hsi14) hsi14 oscillator startup time 1 (2) -2 (2) s i dda(hsi14) hsi14 oscillator power consumption - 100 150 (2) a -36                     -!8 -). 4;?#= !
electrical characteristics stm32f091xb stm32f091xc 78/129 docid026284 rev 1 high-speed internal 48 mhz (hsi48) rc oscillator figure 21. hsi48 oscillator accuracy characterization results table 43. hsi48 oscillator characteristics (1) 1. v dda = 3.3 v, t a = ?40 to 105 c unless otherwise specified. symbol parameter conditions min typ max unit f hsi48 frequency - 48 - mhz trim hsi48 user-trimming step 0.09 (2) 0.14 0.2 (2) % ducy (hsi48) duty cycle 45 (2) 2. guaranteed by design, not tested in production. -55 (2) % acc hsi48 accuracy of the hsi48 oscillator (factory calibrated) t a = ?40 to 105 c -4.9 (3) 3. data based on characterization results, not tested in production. - 4.7 (3) % t a = ?10 to 85 c -4.1 (3) - 3.7 (3) % t a = 0 to 70 c -3.8 (3) - 3.4 (3) % t a = 25 c -2.8 - 2.9 % t su(hsi48) hsi48 oscillator startup time - - 6 (2) s i dda(hsi48) hsi48 oscillator power consumption - 312 350 (2) a -36                     -!8 -). 4;?#= !
docid026284 rev 1 79/129 stm32f091xb stm32f091xc electrical characteristics 104 low-speed internal (lsi) rc oscillator 6.3.9 pll characteristics the parameters given in table 45 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 24: general operating conditions . table 44. lsi oscillator characteristics (1) 1. v dda = 3.3 v, t a = ?40 to 105 c unless otherwise specified. symbol parameter min typ max unit f lsi frequency 30 40 50 khz t su(lsi) (2) 2. guaranteed by design, not tested in production. lsi oscillator startup time - - 85 s i dda(lsi) (2) lsi oscillator power consumption - 0.75 1.2 a table 45. pll characteristics symbol parameter value unit min typ max f pll_in pll input clock (1) 1. take care to use the appropriate multiplier factors to obtain pll input clock values compatible with the range defined by f pll_out . 1 (2) 8.0 24 (2) mhz pll input clock duty cycle 40 (2) -60 (2) % f pll_out pll multiplier output clock 16 (2) - 48 mhz t lock pll lock time - - 200 (2) 2. guaranteed by design, not tested in production. s jitter pll cycle-to-cycle jitter - - 300 (2) ps
electrical characteristics stm32f091xb stm32f091xc 80/129 docid026284 rev 1 6.3.10 memory characteristics flash memory the characteristics are given at t a = ?40 to 105 c unless otherwise specified. 6.3.11 emc characteristics susceptibility tests are performed on a sample basis during device characterization. functional ems (electromagnetic susceptibility) while a simple application is executed on the device (toggling 2 leds through i/o ports). the device is stressed by two electromagnetic events until a failure occurs. the failure is indicated by the leds: ? electrostatic discharge (esd) (positive and negative) is applied to all device pins until a functional disturbance occurs. this test is compliant with the iec 61000-4-2 standard. ? ftb : a burst of fast transient voltage (positive and negative) is applied to v dd and v ss through a 100 pf capacitor, until a functional disturbance occurs. this test is compliant with the iec 61000-4-4 standard. a device reset allows normal operations to be resumed. the test results are given in table 48 . they are based on the ems levels and classes defined in application note an1709. table 46. flash memory characteristics symbol parameter conditions min typ max (1) 1. guaranteed by design, not tested in production. unit t prog 16-bit programming time t a = ?40 to +105 c 40 53.5 60 s t erase page (2 kb) erase time t a = ?40 to +105 c 20 - 40 ms t me mass erase time t a = ?40 to +105 c 20 - 40 ms i dd supply current write mode - - 10 ma erase mode - - 12 ma table 47. flash memory endurance and data retention symbol parameter conditions min (1) 1. data based on characterization results, not tested in production. unit n end endurance t a = ?40 to +105 c 10 kcycles t ret data retention 1 kcycle (2) at t a = 85 c 2. cycling performed over the whole temperature range. 30 years 1 kcycle (2) at t a = 105 c 10 10 kcycles (2) at t a = 55 c 20
docid026284 rev 1 81/129 stm32f091xb stm32f091xc electrical characteristics 104 designing hardened software to avoid noise problems emc characterization and optimization are performed at component level with a typical application environment and simplified mcu software. it should be noted that good emc performance is highly dependent on the user application and the software in particular. therefore it is recommended that the user applies emc software optimization and prequalification tests in relation with the emc level requested for his application. software recommendations the software flowchart must include the management of runaway conditions such as: ? corrupted program counter ? unexpected reset ? critical data corruption (control registers...) prequalification trials most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the nrst pin or the oscillator pins for 1 second. to complete these trials, esd stress can be applied directly on the device, over the range of specification values. when unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note an1015). electromagnetic interference (emi) the electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 leds through the i/o ports). this emission test is compliant with iec 61967-2 standard which specifies the test board and the pin loading. table 48. ems characteristics symbol parameter conditions level/ class v fesd voltage limits to be applied on any i/o pin to induce a functional disturbance v dd = 3.3 v, lqfp100, t a = +25 c, f hclk = 48 mhz, conforming to iec 61000-4-2 2b v eftb fast transient voltage burst limits to be applied through 100 pf on v dd and v ss pins to induce a functional disturbance v dd = 3.3 v, lqfp100, t a = +25c, f hclk = 48 mhz, conforming to iec 61000-4-4 4b table 49. emi characteristics symbol parameter conditions monitored frequency band max vs. [f hse /f hclk ] unit 8/48 mhz s emi peak level v dd = 3.6 v, t a = 25 c, lqfp100 package compliant with iec 61967-2 0.1 to 30 mhz 3 db v 30 to 130 mhz 23 130 mhz to 1 ghz 15 emi level 4 -
electrical characteristics stm32f091xb stm32f091xc 82/129 docid026284 rev 1 6.3.12 electrical sensitivity characteristics based on three different tests (esd, lu) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. electrostatic discharge (esd) electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. the sample size depends on the number of supply pins in the device (3 parts (n+1) supply pins). this test conforms to the jesd22-a114/c101 standard. static latch-up two complementary static tests are required on six parts to assess the latch-up performance: ? a supply overvoltage is applied to each power supply pin. ? a current injection is applied to each input, output and configurable i/o pin. these tests are compliant with eia/jesd 78a ic latch-up standard. 6.3.13 i/o current injection characteristics as a general rule, current injection to the i/o pins, due to external voltage below v ss or above v ddiox (for standard, 3.3 v-capable i/o pins) should be avoided during normal product operation. however, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. table 50. esd absolute maximum ratings symbol ratings conditions packages class maximum value (1) unit v esd(hbm) electrostatic discharge voltage (human body model) t a = +25 c, conforming to jesd22-a114 all 2 2000 v v esd(cdm) electrostatic discharge voltage (charge device model) t a = +25 c, conforming to ansi/esd stm5.3.1 all c4 500 v 1. data based on characterization results, not tested in production. table 51. electrical sensitivities symbol parameter conditions class lu static latch-up class t a = +105 c conforming to jesd78a ii level a
docid026284 rev 1 83/129 stm32f091xb stm32f091xc electrical characteristics 104 functional susceptibility to i/o current injection while a simple application is executed on the device, the device is stressed by injecting current into the i/o pins programmed in floating input mode. while current is injected into the i/o pin, one at a time, the device is checked for functional failures. the failure is indicated by an out of range parameter: adc error above a certain limit (higher than 5 lsb tue), out of conventional limits of induced leakage current on adjacent pins (out of the -5 a/+0 a range) or other functional failure (for example reset occurrence or oscillator frequency deviation). the characterization results are given in table 52 . negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. 6.3.14 i/o port characteristics general input/output characteristics unless otherwise specified, the parameters given in table 53 are derived from tests performed under the conditions summarized in table 24: general operating conditions . all i/os are designed as cmos- and ttl-compliant. table 52. i/o current injection susceptibility symbol description functional susceptibility unit negative injection positive injection i inj injected current on boot0 -0 na ma injected current on pf1 pin (ftf pin) -0 na injected current on pc0 pin (tta pin) -0 +5 injected current on pa4, pa5 pins with induced leakage current on adjacent pins less than -20 a -5 na injected current on other ft and ftf pins -5 na injected current on all other tc, tta and rst pins -5 +5 table 53. i/o static characteristics symbol parameter conditions min typ max unit v il low level input voltage tc and tta i/o - - 0.3 v ddiox +0.07 (1) v ft and ftf i/o - - 0.475 v ddiox ?0.2 (1) all i/os - - 0.3 v ddiox v ih high level input voltage tc and tta i/o 0.445 v ddiox +0.398 (1) -- v ft and ftf i/o 0.5 v ddiox +0.2 (1) -- all i/os 0.7 v ddiox --
electrical characteristics stm32f091xb stm32f091xc 84/129 docid026284 rev 1 v hys schmitt trigger hysteresis tc and tta i/o - 200 (1) - mv ft and ftf i/o - 100 (1) - i lkg input leakage current (2) tc, ft and ftf i/o tta in digital mode v ss v in v ddiox -- 0.1 a tta in digital mode v ddiox v in v dda --1 tta in analog mode v ss v in v dda -- 0.2 ft and ftf i/o (3) v ddiox v in 5 v --10 r pu weak pull-up equivalent resistor (4) v in = v ss 25 40 55 k r pd weak pull-down equivalent resistor (4) v in = v ddiox 25 40 55 k c io i/o pin capacitance - 5 - pf 1. data based on design simulation only. not tested in production. 2. the leakage could be higher than the maximum value, if negative current is injected on adjacent pins. refer to table 52: i/o current injection susceptibility . 3. to sustain a voltage higher than v ddiox + 0.3 v, the internal pull-up/pull-down resistors must be disabled. 4. pull-up and pull-down resistors are designed with a true resistance in series with a switchable pmos/nmos. this pmos/nmos contribution to the series resistance is minimal (~10% order). table 53. i/o static characteristics (continued) symbol parameter conditions min typ max unit
docid026284 rev 1 85/129 stm32f091xb stm32f091xc electrical characteristics 104 all i/os are cmos- and ttl-compliant (no software configuration required). their characteristics cover more than the strict cmos-technology or ttl parameters. the coverage of these requirements is shown in figure 22 for standard i/os, and in figure 23 for 5 v tolerant i/os. the following curves are design simulation results, not tested in production. figure 22. tc and tta i/o input characteristics ms32130v3 0 0.5 1 1.5 2 2.5 3 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 ttl standard requirement ttl standard requirement t tl stan d ar d re q uiremen t tested range tested range undefined input range v ddiox (v) v in (v)
electrical characteristics stm32f091xb stm32f091xc 86/129 docid026284 rev 1 figure 23. five volt tolerant (ft and ftf) i/o input characteristics 0 0.5 1 1.5 2 2.5 3 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 ttl standard requirement ttl standard requirement t tl stan d ar d re q uiremen t tested range tested range v in (v) v ddiox (v) ms32131v3
docid026284 rev 1 87/129 stm32f091xb stm32f091xc electrical characteristics 104 output driving current the gpios (general purpose input/outputs) can sink or source up to +/-8 ma, and sink or source up to +/- 20 ma (with a relaxed v ol /v oh ). in the user application, the number of i/o pins which can drive current must be limited to respect the absolute maximum rating specified in section 6.2 : ? the sum of the currents sourced by all the i/os on v ddiox, plus the maximum consumption of the mcu sourced on v dd, cannot exceed the absolute maximum rating i vdd (see table 21: voltage characteristics ). ? the sum of the currents sunk by all the i/os on v ss , plus the maximum consumption of the mcu sunk on v ss , cannot exceed the absolute maximum rating i vss (see table 21: voltage characteristics ). output voltage levels unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in table 24: general operating conditions . all i/os are cmos- and ttl-compliant (ft, tta or tc unless otherwise specified). table 54. output voltage characteristics (1) symbol parameter conditions min max unit v ol output low level voltage for an i/o pin cmos port (2) |i io | = 8 ma v ddiox 2.7 v - 0.4 v v oh output high level voltage for an i/o pin v ddiox ?0.4 - v ol output low level voltage for an i/o pin ttl port (2) |i io | = 8 ma v ddiox 2.7 v - 0.4 v v oh output high level voltage for an i/o pin 2.4 - v ol (3) output low level voltage for an i/o pin |i io | = 20 ma v ddiox 2.7 v - 1.3 v v oh (3) output high level voltage for an i/o pin v ddiox ?1.3 - v ol (3) output low level voltage for an i/o pin |i io | = 6 ma v ddiox 2 v - 0.4 v v oh (3) output high level voltage for an i/o pin v ddiox ?0.4 - v ol (4) output low level voltage for an i/o pin |i io | = 4 ma - 0.4 v v oh (4) output high level voltage for an i/o pin v ddiox ?0.4 - v v olfm+ (3) output low level voltage for an ftf i/o pin in fm+ mode |i io | = 20 ma v ddiox 2.7 v - 0.4 v |i io | = 10 ma - 0.4 v 1. the i io current sourced or sunk by the device must always respect the absolute maximum rating specified in table 21: voltage characteristics , and the sum of the currents sourced or sunk by all the i/os (i/o ports and control pins) must always respect the absolute maximum ratings i io . 2. ttl and cmos outputs are compatible with jedec standards jesd36 and jesd52. 3. data based on characterization results. not tested in production. 4. data based on characterization results. not tested in production.
electrical characteristics stm32f091xb stm32f091xc 88/129 docid026284 rev 1 input/output ac characteristics the definition and values of input/output ac characteristics are given in figure 24 and table 55 , respectively. unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in table 24: general operating conditions . table 55. i/o ac characteristics (1)(2) ospeedry [1:0] value (1) symbol parameter conditions min max unit x0 f max(io)out maximum frequency (3) c l = 50 pf, v ddiox 2 v - 2 mhz t f(io)out output fall time - 125 ns t r(io)out output rise time - 125 f max(io)out maximum frequency (3) c l = 50 pf, v ddiox < 2 v - 1 mhz t f(io)out output fall time - 125 ns t r(io)out output rise time - 125 01 f max(io)out maximum frequency (3) c l = 50 pf, v ddiox 2 v - 10 mhz t f(io)out output fall time - 25 ns t r(io)out output rise time - 25 f max(io)out maximum frequency (3) c l = 50 pf, v ddiox < 2 v - 4 mhz t f(io)out output fall time - 62.5 ns t r(io)out output rise time - 62.5 11 f max(io)out maximum frequency (3) c l = 30 pf, v ddiox 2.7 v - 50 mhz c l = 50 pf, v ddiox 2.7 v - 30 c l = 50 pf, 2 v v ddiox < 2.7 v - 20 c l = 50 pf, v ddiox < 2 v - 10 t f(io)out output fall time c l = 30 pf, v ddiox 2.7 v - 5 ns c l = 50 pf, v ddiox 2.7 v - 8 c l = 50 pf, 2 v v ddiox < 2.7 v - 12 c l = 50 pf, v ddiox < 2 v - 25 t r(io)out output rise time c l = 30 pf, v ddiox 2.7 v - 5 c l = 50 pf, v ddiox 2.7 v - 8 c l = 50 pf, 2 v v ddiox < 2.7 v - 12 c l = 50 pf, v ddiox < 2 v - 25
docid026284 rev 1 89/129 stm32f091xb stm32f091xc electrical characteristics 104 figure 24. i/o ac characteristics definition 6.3.15 nrst pin characteristics the nrst pin input driver uses the cmos technology. it is connected to a permanent pull- up resistor, r pu . unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in table 24: general operating conditions . fm+ configuration (4) f max(io)out maximum frequency (3) c l = 50 pf, v ddiox 2 v - 2 mhz t f(io)out output fall time - 12 ns t r(io)out output rise time - 34 f max(io)out maximum frequency (3) c l = 50 pf, v ddiox < 2 v - 0.5 mhz t f(io)out output fall time - 16 ns t r(io)out output rise time - 44 t extipw pulse width of external signals detected by the exti controller 10 - ns 1. the i/o speed is configured using the ospeedrx[1:0] bits. refer to the stm32f0xxxx rm0091 reference manual for a description of gpio port configuration register. 2. guaranteed by design, not tested in production. 3. the maximum frequency is defined in figure 24 . 4. when fm+ configuration is set, the i/o speed control is bypassed. refer to the stm32f0xxxx reference manual rm0091 for a detailed description of fm+ i/o configuration. table 55. i/o ac characteristics (1)(2) (continued) ospeedry [1:0] value (1) symbol parameter conditions min max unit 069 7       0d[lpxpiuhtxhqf\lvdfklhyhgli ww ? zkhqordghge\& vhhwkhwdeoh ,2$&fkdudfwhulvwlfvghilqlwlrq ui u ,2 rxw w i ,2 rxw w -   7dqgliwkhgxw\f\fohlv  table 56. nrst pin characteristics symbol parameter conditions min typ max unit v il(nrst) nrst input low level voltage - - 0.3 v dd +0.07 (1) v v ih(nrst) nrst input high level voltage 0.445 v dd +0.398 (1) --
electrical characteristics stm32f091xb stm32f091xc 90/129 docid026284 rev 1 figure 25. recommended nrst pin protection 1. the external capacitor protects the device against parasitic resets. 2. the user must ensure that the level on the nrst pin can go below the v il(nrst) max level specified in table 56: nrst pin characteristics . otherwise the reset will not be taken into account by the device. 6.3.16 12-bit adc characteristics unless otherwise specified, the parameters given in table 57 are preliminary values derived from tests performed under ambient temperature, f pclk frequency and v dda supply voltage conditions summarized in table 24: general operating conditions . note: it is recommended to perform a calibration after each power-up. v hys(nrst) nrst schmitt trigger voltage hysteresis - 200 - mv r pu weak pull-up equivalent resistor (2) v in = v ss 25 40 55 k v f(nrst) nrst input filtered pulse - - 100 (1) ns v nf(nrst) nrst input not filtered pulse 2.7 < v dd < 3.6 300 (3) -- ns 2.0 < v dd < 3.6 500 (3) -- 1. data based on design simulation only. not tested in production. 2. the pull-up is designed with a true resistance in series with a switchable pmos. this pmos contribution to the series resistance is minimal (~10% order). 3. data based on design simulation only. not tested in production. table 56. nrst pin characteristics (continued) symbol parameter conditions min typ max unit 5 38 9 '' 069 ,qwhuqdouhvhw ([whuqdo uhvhwflufxlw 1567 )lowhu   ?) table 57. adc characteristics symbol parameter conditions min typ max unit v dda analog supply voltage for adc on 2.4 - 3.6 v i dda (adc) current consumption of the adc (1) v dd = v dda = 3.3 v - 0.9 - ma f adc adc clock frequency 0.6 - 14 mhz f s (2) sampling rate 0.05 - 1 mhz
r ain t s f adc c adc 2 n2 + () ln ------------------------------------------------------------- - r adc ? < docid026284 rev 1 91/129 stm32f091xb stm32f091xc electrical characteristics 104 equation 1: r ain max formula f trig (2) external trigger frequency f adc = 14 mhz - - 823 khz - - 17 1/f adc v ain conversion voltage range 0 - v dda v r ain (2) external input impedance see equation 1 and table 58 for details - - 50 k  r adc (2) sampling switch resistance --1k  c adc (2) internal sample and hold capacitor --8pf t cal (2) calibration time f adc = 14 mhz 5.9 ?s 83 1/f adc w latency (2) adc_dr register write latency adc clock = hsi14 1.5 adc cycles + 2 f pclk cycles - 1.5 adc cycles + 3 f pclk cycles adc clock = pclk/2 - 4.5 - f pclk cycle adc clock = pclk/4 - 8.5 - f pclk cycle t latr (2) trigger conversion latency f adc = f pclk /2 = 14 mhz 0.196 ?s f adc = f pclk /2 5.5 1/f pclk f adc = f pclk /4 = 12 mhz 0.219 ?s f adc = f pclk /4 10.5 1/f pclk f adc = f hsi14 = 14 mhz 0.188 - 0.259 ?s jitter adc adc jitter on trigger conversion f adc = f hsi14 -1-1/f hsi14 t s (2) sampling time f adc = 14 mhz 0.107 - 17.1 ?s 1.5 - 239.5 1/f adc t stab (2) power-up time 0 0 1 ?s t conv (2) total conversion time (including sampling time) f adc = 14 mhz 1 - 18 ?s 14 to 252 (t s for sampling +12.5 for successive approximation) 1/f adc 1. during conversion of the sampled value (12.5 x adc clock period), an additional consumption of 100 ?a on i dda and 60 ?a on i dd should be taken into account. 2. guaranteed by design, not tested in production. table 57. adc characteristics (continued) symbol parameter conditions min typ max unit
electrical characteristics stm32f091xb stm32f091xc 92/129 docid026284 rev 1 the formula above ( equation 1 ) is used to determine the maximum external impedance allowed for an error below 1/4 of lsb. here n = 12 (from 12-bit resolution). table 58. r ain max for f adc = 14 mhz t s (cycles) t s ( s) r ain max (k ) (1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 na 239.5 17.1 na 1. guaranteed by design, not tested in production. table 59. adc accuracy (1)(2)(3) symbol parameter test conditions typ max (4) unit et total unadjusted error f pclk = 48 mhz, f adc = 14 mhz, r ain < 10 k v dda = 3 v to 3.6 v t a = 25 c 1.3 2 lsb eo offset error 1 1.5 eg gain error 0.5 1.5 ed differential linearity error 0.7 1 el integral linearity error 0.8 1.5 et total unadjusted error f pclk = 48 mhz, f adc = 14 mhz, r ain < 10 k v dda = 2.7 v to 3.6 v t a = ? 40 to 105 c 3.3 4 lsb eo offset error 1.9 2.8 eg gain error 2.8 3 ed differential linearity error 0.7 1.3 el integral linearity error 1.2 1.7 et total unadjusted error f pclk = 48 mhz, f adc = 14 mhz, r ain < 10 k v dda = 2.4 v to 3.6 v t a = 25 c 3.3 4 lsb eo offset error 1.9 2.8 eg gain error 2.8 3 ed differential linearity error 0.7 1.3 el integral linearity error 1.2 1.7 1. adc dc accuracy values are measured after internal calibration. 2. adc accuracy vs. negative injection current: injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. it is recommended to add a schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. any positive injection current within the limits specified for i inj(pin) and i inj(pin) in section 6.3.14 does not affect the adc accuracy. 3. better performance may be achieved in restricted v dda , frequency and temperature ranges. 4. data based on characterization results, not tested in production.
docid026284 rev 1 93/129 stm32f091xb stm32f091xc electrical characteristics 104 figure 26. adc accuracy characteristics figure 27. typical connection diagram using the adc 1. refer to table 57: adc characteristics for the values of r ain , r adc and c adc . 2. c parasitic represents the capacitance of the pcb (dependent on soldering and pcb layout quality) plus the pad capacitance (roughly 7 pf). a high c parasitic value will downgrade conversion accuracy. to remedy this, f adc should be reduced. general pcb design guidelines power supply decoupling should be performed as shown in figure 13: power supply scheme . the 10 nf capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. ( 2 ( * /6% ,'($/  ([dpsohridqdfwxdo wudqvihufxuyh  7khlghdowudqvihufxuyh  (qg srlqwfruuhodwlrqolqh ( 7 7rwdo 8qdgmxvwhg (uuru pd[lpxp ghyldwlrq ehwzhhq wkhdfwxdodqgwkhlghdowudqvihu fxuyhv ( 2 2iivhw(uurughyldwlrqehwzhhqwkhiluvwdfwxdo wudqvlwlrqdqgwkh iluvwlghdorqh ( * *dlq (uuru ghyldwlrq ehwzhhq wkh odvw lghdo wudqvlwlrqdqgwkh odvwdfwxdorqh ( ' 'liihuhqwldo/lqhdulw\(uuru pd[lpxpghyldwlrq ehwzhhq dfwxdovwhsvdqgwkhlghdorqh ( / ,qwhjudo /lqhdulw\ (uuru pd[lpxp ghyldwlrq ehwzhhq dq\ dfwxdo wudqvlwlrq dqg wkh hqg srlqw fruuhodwlrqolqh                   ( 7 ( ' ( /  9 ''$ 9 66$ -36 069 9 ''$ $,1[ , / ? ?$ 9 7 5 $,1  & sdu dvlwlf 9 $,1 9 7 5 $'& elw frq yhu whu & $'& 6dpsohdqgkrog$'& frq yhu whu
electrical characteristics stm32f091xb stm32f091xc 94/129 docid026284 rev 1 6.3.17 dac electrical specifications table 60. dac characteristics symbol parameter min typ max unit comments v dda analog supply voltage for dac on 2.4 - 3.6 v r load (1) resistive load with buffer on 5- - k load is referred to ground r o (1) impedance output with buffer off - - 15 k when the buffer is off, the minimum resistive load between dac_out and v ss to have a 1% accuracy is 1.5 m c load (1) capacitive load - - 50 pf maximum capacitive load at dac_out pin (when the buffer is on). dac_out min (1) lower dac_out voltage with buffer on 0.2 - - v it gives the maximum output excursion of the dac. it corresponds to 12-bit input code (0x0e0) to (0xf1c) at v dda = 3.6 v and (0x155) and (0xeab) at v dda = 2.4 v dac_out max (1) higher dac_out voltage with buffer on --v dda ? 0.2 v dac_out min (1) lower dac_out voltage with buffer off - 0.5 - mv it gives the maximum output excursion of the dac. dac_out max (1) higher dac_out voltage with buffer off --v dda ? 1lsb v i dda (1) dac dc current consumption in quiescent mode (2) - - 380 a with no load, middle code (0x800) on the input - - 480 a with no load, worst code (0xf1c) on the input dnl (3) differential non linearity difference between two consecutive code-1lsb) - - 0.5 lsb given for the dac in 10-bit configuration - - 2 lsb given for the dac in 12-bit configuration inl (3) integral non linearity (difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 1023) - - 1 lsb given for the dac in 10-bit configuration - - 4 lsb given for the dac in 12-bit configuration offset (3) offset error (difference between measured value at code (0x800) and the ideal value = v dda /2) - - 10 mv - - 3 lsb given for the dac in 10-bit at v dda = 3.6 v - - 12 lsb given for the dac in 12-bit at v dda = 3.6 v gain error (3) gain error - - 0.5 % given for the dac in 12-bit configuration
docid026284 rev 1 95/129 stm32f091xb stm32f091xc electrical characteristics 104 t settling (3) settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when dac_out reaches final value 1lsb -3 4 sc load 50 pf, r load 5 k update rate (3) max frequency for a correct dac_out change when small variation in the input code (from code i to i+1lsb) - - 1 ms/s c load 50 pf, r load 5 k t wakeup (3) wakeup time from off state (setting the enx bit in the dac control register) - 6.5 10 s c load 50 pf, r load 5 k input code between lowest and highest possible ones. psrr+ (1) power supply rejection ratio (to v dda ) (static dc measurement - ?67 ?40 db no r load , c load = 50 pf 1. guaranteed by design, not tested in production. 2. the dac is in ?quiescent mode? when it keeps the value steady on the output so no dynamic consumption is involved. 3. data based on characterization results, not tested in production. table 60. dac characteristics (continued) symbol parameter min typ max unit comments
electrical characteristics stm32f091xb stm32f091xc 96/129 docid026284 rev 1 6.3.18 comparator characteristics table 61. comparator characteristics symbol parameter conditions min (1) typ max (1) unit v dda analog supply voltage - 3.6 v v in comparator input voltage range 0-v dda v sc v refint scaler offset voltage - 5 10 mv t s_sc v refint scaler startup time from power down - - 0.2 ms t start comparator startup time startup time to reach propagation delay specification --60 s t d propagation delay for 200 mv step with 100 mv overdrive ultra-low power mode - 2 4.5 s low power mode - 0.7 1.5 medium power mode - 0.3 0.6 high speed mode v dda 2.7 v - 50 100 ns v dda < 2.7 v - 100 240 propagation delay for full range step with 100 mv overdrive ultra-low power mode - 2 7 s low power mode - 0.7 2.1 medium power mode - 0.3 1.2 high speed mode v dda 2.7 v - 90 180 ns v dda < 2.7 v - 110 300 v offset comparator offset error - 4 10 mv dv offset /dt offset error temperature coefficient -18 - v/c i dd(comp) comp current consumption ultra-low power mode - 1.2 1.5 a low power mode - 3 5 medium power mode - 10 15 high speed mode - 75 100
docid026284 rev 1 97/129 stm32f091xb stm32f091xc electrical characteristics 104 6.3.19 temperature sensor characteristics 6.3.20 v bat monitoring characteristics v hys comparator hysteresis no hysteresis (compxhyst[1:0]=00) -0 - mv low hysteresis (compxhyst[1:0]=01) high speed mode 3 8 13 all other power modes 510 medium hysteresis (compxhyst[1:0]=10) high speed mode 7 15 26 all other power modes 919 high hysteresis (compxhyst[1:0]=11) high speed mode 18 31 49 all other power modes 19 40 1. data based on characterization results, not tested in production. table 61. comparator characteristics (continued) symbol parameter conditions min (1) typ max (1) unit table 62. ts characteristics symbol parameter min typ max unit t l (1) v sense linearity with temperature - 1 2c avg_slope (1) average slope 4.0 4.3 4.6 mv/c v 30 voltage at 30 c ( 5 c) (2) 1.34 1.43 1.52 v t start (1) startup time 4 - 10 s t s_temp (1) adc sampling time when reading the temperature 4- - s 1. guaranteed by design, not tested in production. 2. measured at v dda = 3.3 v 10 mv. the v 30 adc conversion result is stored in the ts_cal1 byte . refer to table 3: temperature sensor calibration values . table 63. v bat monitoring characteristics symbol parameter min typ max unit r resistor bridge for v bat -50-k q ratio on v bat measurement - 2 - er (1) error on q ?1 - +1 % t s_vbat (1) adc sampling time when reading the v bat 4- - s 1. guaranteed by design, not tested in production.
electrical characteristics stm32f091xb stm32f091xc 98/129 docid026284 rev 1 6.3.21 timer characteristics the parameters given in the following tables are guaranteed by design. refer to section 6.3.14: i/o port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, pwm output). table 64. timx characteristics symbol parameter conditions min max unit t res(tim) timer resolution time 1- t timxclk f timxclk = 48 mhz 20.8 - ns f ext timer external clock frequency on ch1 to ch4 0 f timxclk /2 mhz f timxclk = 48 mhz 0 24 mhz res tim timer resolution timx (except tim2) - 16 bit tim2 - 32 t counter 16-bit counter clock period 1 65536 t timxclk f timxclk = 48 mhz 0.0208 1365 s t max_count maximum possible count with 32-bit counter - 65536 65536 t timxclk f timxclk = 48 mhz - 89.48 s table 65. iwdg min/max timeout period at 40 khz (lsi) (1) 1. these timings are given for a 40 khz clock but the microcontroller internal rc frequency can vary from 30 to 60 khz. moreover, given an exact rc oscillator frequency, the exact timings still depend on the phasing of the apb interface clock versus the lsi clock so that there is always a full rc period of uncertainty. prescaler divider pr[2:0] bits min timeout rl[11:0]= 0x000 max timeout rl[11:0]= 0xfff unit /4 0 0.1 409.6 ms /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 6 or 7 6.4 26214.4 table 66. wwdg min/max timeout value at 48 mhz (pclk) prescaler wdgtb min timeout value max timeout value unit 1 0 0.0853 5.4613 ms 2 1 0.1706 10.9226 4 2 0.3413 21.8453 8 3 0.6826 43.6906
docid026284 rev 1 99/129 stm32f091xb stm32f091xc electrical characteristics 104 6.3.22 communication interfaces i 2 c interface characteristics the i2c interface meets the timings requirements of the i 2 c-bus specification and user manual rev. 03 for: ? standard-mode (sm): with a bit rate up to 100 kbit/s ? fast-mode (fm): with a bit rate up to 400 kbit/s ? fast-mode plus (fm+): with a bit rate up to 1 mbit/s. the i2c timings requirements are guaranteed by design when the i2c peripheral is properly configured (refer to reference manual). the sda and scl i/o requirements are met with the following restrictions: the sda and scl i/o pins are not ?true? open-drain. when configured as open-drain, the pmos connected between the i/o pin and v ddiox is disabled, but is still present. only ftf i/o pins support fm+ low level output current maximum requirement. refer to section 6.3.14: i/o port characteristics for the i2c i/os characteristics. all i2c sda and scl i/os embed an analog filter. refer to the table below for the analog filter characteristics: table 67. i2c analog filter characteristics (1) 1. guaranteed by design, not tested in production. symbol parameter min max unit t af maximum pulse width of spikes that are suppressed by the analog filter 50 (2) 2. spikes with widths below t af(min) are filtered. 260 (3) 3. spikes with widths above t af(max) are not filtered ns
electrical characteristics stm32f091xb stm32f091xc 100/129 docid026284 rev 1 spi/i 2 s characteristics unless otherwise specified, the parameters given in table 68 for spi or in table 69 for i 2 s are derived from tests performed under the ambient temperature, f pclkx frequency and supply voltage conditions summarized in table 24: general operating conditions . refer to section 6.3.14: i/o port characteristics for more details on the input/output alternate function characteristics (nss, sck, mosi, miso for spi and ws, ck, sd for i 2 s). table 68. spi characteristics (1) symbol parameter conditions min max unit f sck 1/t c(sck) spi clock frequency master mode - 18 mhz slave mode - 18 t r(sck) t f(sck) spi clock rise and fall time capacitive load: c = 15 pf - 6 ns t su(nss) nss setup time slave mode 4tpclk - ns t h(nss) nss hold time slave mode 2tpclk + 10 - t w(sckh) t w(sckl) sck high and low time master mode, f pclk = 36 mhz, presc = 4 tpclk/2 -2 tpclk/2 + 1 t su(mi) t su(si) data input setup time master mode 4 - slave mode 5 - t h(mi) data input hold time master mode 4 - t h(si) slave mode 5 - t a(so) (2) data output access time slave mode, f pclk = 20 mhz 0 3tpclk t dis(so) (3) data output disable time slave mode 0 18 t v(so) data output valid time slave mode (after enable edge) - 22.5 t v(mo) data output valid time master mode (after enable edge) - 6 t h(so) data output hold time slave mode (after enable edge) 11.5 - t h(mo) master mode (after enable edge) 2 - ducy(sck) spi slave input clock duty cycle slave mode 25 75 % 1. data based on characterization results, not tested in production. 2. min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in hi-z
docid026284 rev 1 101/129 stm32f091xb stm32f091xc electrical characteristics 104 figure 28. spi timing diagram - slave mode and cpha = 0 figure 29. spi timing diagram - slave mode and cpha = 1 1. measurement points are done at cmos levels: 0.3 v dd and 0.7 v dd . dlf ^</v?? w,a  dk^/ / ewhd d/^k khd whd w,a  d^  k hd d^ /e /d khd >^ /e >^ khd wk>a wk>a /d /e e^^]v?? ?^h~e^^ ?~^< ?z~e^^ ?~^k ?~^<,?~^<> ?~^k ?z~^k ??~^<?(~^< ?]?~^k ??~^/ ?z~^/ dl ^</v?? w,a dk^ / /ewhd d/^ k khd w hd w,a d^  k h d d^ /e / d khd >^ /e >^ khd wk>a wk>a /d /e ? ^h~e^^ ? ~^< ? z~e^^ ? ~^k ? ~^>, ? ~^>> ? ~^k ? z~^k ? ?~^> ? (~^> ? ]?~^k ? ?~^/ ? z~^/ e^^]v??
electrical characteristics stm32f091xb stm32f091xc 102/129 docid026284 rev 1 figure 30. spi timing diagram - master mode 1. measurement points are done at cmos levels: 0.3 v dd and 0.7 v dd . ai6 3#+/utput #0(!  -/3) /54054 -)3/ ).0 54 #0(!  -3 "). - 3"/54 ") 4). ,3"/54 ,3"). #0/, #0/, " ) 4/54 .33input t c3#+ t w3#+( t w3#+, t r3#+ t f3#+ t h-) (igh 3#+/utput #0(! #0(! #0/, #0/, t su-) t v-/ t h-/ table 69. i 2 s characteristics (1) symbol parameter conditions min max unit f ck 1/t c(ck) i 2 s clock frequency master mode (data: 16 bits, audio frequency = 48 khz) 1.597 1.601 mhz slave mode 0 6.5 t r(ck) i 2 s clock rise time capacitive load c l = 15 pf - 10 ns t f(ck) i 2 s clock fall time - 12 t w(ckh) i2s clock high time master f pclk = 16 mhz, audio frequency = 48 khz 306 - t w(ckl) i2s clock low time 312 - t v(ws) ws valid time master mode 2 - t h(ws) ws hold time master mode 2 - t su(ws) ws setup time slave mode 7 - t h(ws) ws hold time slave mode 0 - ducy(sck) i2s slave input clock duty cycle slave mode 25 75 %
docid026284 rev 1 103/129 stm32f091xb stm32f091xc electrical characteristics 104 figure 31. i2s slave timing diagram (philips protocol) 1. measurement points are done at cmos levels: 0.3 v ddiox and 0.7 v ddiox . 2. lsb transmit/receive of the previously transmitted byte. no lsb transmit/receive is sent before the first byte. t su(sd_mr) data input setup time master receiver 6 - ns t su(sd_sr) data input setup time slave receiver 2 - t h(sd_mr) (2) data input hold time master receiver 4 - t h(sd_sr) (2) slave receiver 0.5 - t v(sd_st) (2) data output valid time slave transmitter (after enable edge) slave transmitter (after enable edge) master transmitter (after enable edge) master transmitter (after enable edge) - t h(sd_st) data output hold time 13 - t v(sd_mt) (2) data output valid time - 4 t h(sd_mt) data output hold time 0 - 1. data based on design simulation and/or characterization results, not tested in production. 2. depends on f pclk . for example, if f pclk = 8 mhz, then t pclk = 1/f plclk = 125 ns. table 69. i 2 s characteristics (1) (continued) symbol parameter conditions min max unit &.,qsxw &32/  &32/  w f &. :6lqsxw 6' wudqvplw 6' uhfhlyh w z &.+ w z &./ w vx :6 w y 6'b67 w k 6'b67 w k :6 w vx 6'b65 w k 6'b65 06%uhfhlyh %lwquhfhlyh /6%uhfhlyh 06%wudqvplw %lwqwudqvplw /6%wudqvplw dle /6%uhfhlyh  /6%wudqvplw 
electrical characteristics stm32f091xb stm32f091xc 104/129 docid026284 rev 1 figure 32. i2s master timing diagram (philips protocol) 1. data based on characterization results, not tested in production. 2. lsb transmit/receive of the previously transmitted byte. no lsb transmit/receive is sent before the first byte. can (controller area network) interface refer to section 6.3.14: i/o port characteristics for more details on the input/output alternate function characteristics (can_tx and can_rx). #+output #0/, #0/, t c#+ 73output 3$ receive 3$ transmit t w#+( t w#+, t su3$?-2 t v3$?-4 t h3$?-4 t h73 t h3$?-2 -3"receive "itnreceive ,3"receive -3"transmit "itntransmit ,3"transmit aib t f#+ t r#+ t v73 ,3"receive  ,3"transmit 
docid026284 rev 1 105/129 stm32f091xb stm32f091xc package characteristics 127 7 package characteristics 7.1 package mechanical data in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions and product status are available at: www.st.com . ecopack ? is an st trademark.
package characteristics stm32f091xb stm32f091xc 106/129 docid026284 rev 1 figure 33. ufbga100 ? ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package outline 1. drawing is not to scale. a1 ball pad corner top view side view bottom view a1 ball pad corner e d e1 e fe d1 fd 0.50 0.10 a1 a a2 1.75 1.75 0.10 z x y a0c2_me b table 70. ufbga100 ? ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data symbol millimeters inches (1) min typ max min typ max a 0.460 0.530 0.600 0.0181 0.0209 0.0236 a1 0.060 0.080 0.100 0.0024 0.0031 0.0039 a2 0.400 0.450 0.500 0.0157 0.0177 0.0197 b 0.200 0.250 0.300 0.0079 0.0098 0.0118 d - 7.000 - - 0.2756 - d1 - 5.500 - - 0.2165 - e - 7.000 - - 0.2756 - e1 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - fd - 0.750 - - 0.0295 - fe - 0.750 - - 0.0295 - 1. values in inches are converted from mm and rounded to 4 decimal digits.
docid026284 rev 1 107/129 stm32f091xb stm32f091xc package characteristics 127 figure 34. ufbga100 recommended footprint device marking for ufbga100 the following figure shows the device marking for the ufbga100 package. figure 35. ufbga100 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be contacted prior to any decision to use these engineering samples to run qualification activity. 069 'vp 'sdg table 71. ufbga100 recommended pcb design rules dimension recommended values pitch 0.50 mm dpad 0.27 mm dsm 0.35 mm typ (depending on the soldermask registration tolerance) solder paste 0.27 mm aperture diameter 069 5hylvlrqfrgh :88 45.' 7$) 3 'dwhfrgh 3urgxfwlghqwlilfdwlrq  3lqlghqwlilhu
package characteristics stm32f091xb stm32f091xc 108/129 docid026284 rev 1 figure 36. lqfp100 ? 14 x 14 mm 100 pin low-profile quad flat package outline 1. drawing is not to scale. e )$%.4)&)#!4)/. 0). '!5'%0,!.% mm 3%!4).' 0,!.% $ $ $ % % % + ccc # #         ,?-%?6 ! ! ! , , c b ! table 72. lqfp100 ? 14 x 14 mm low-profile quad flat package mechanical data symbol millimeters inches (1) min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d 15.800 16.000 16.200 0.6220 0.6299 0.6378 d1 13.800 14.000 14.200 0.5433 0.5512 0.5591 d3 - 12.000 - - 0.4724 - e 15.800 16.000 16.200 0.6220 0.6299 0.6378
docid026284 rev 1 109/129 stm32f091xb stm32f091xc package characteristics 127 figure 37. lqfp100 recommended footprint 1. dimensions are in millimeters. e1 13.800 14.000 14.200 0.5433 0.5512 0.5591 e3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 k 0 3.5 7 0 3.5 7 1. values in inches are converted from mm and rounded to 4 decimal digits. table 72. lqfp100 ? 14 x 14 mm low-profile quad flat package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max 75 51 50 76 0.5 0.3 16.7 14.3 100 26 12.3 25 1.2 16.7 1 ai14906b
package characteristics stm32f091xb stm32f091xc 110/129 docid026284 rev 1 device marking for lqfp100 the following figure shows the device marking for the lqfp100 package. figure 38. lqfp100 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be contacted prior to any decision to use these engineering samples to run qualification activity. 069 45.' 7$5 3 3urgxfwlghqwlilfdwlrq  5hylvlrqfrgh 88 : 'dwhfrgh 2swlrqdojdwhpdun 3lqlghqwlilhu
docid026284 rev 1 111/129 stm32f091xb stm32f091xc package characteristics 127 figure 39. ufbga64 ? ultra fine pitch ball grid array, 5 x 5 mm, 0.50 mm pitch, package outline 1. drawing is not to scale. table 73. ufbga64 ?ultra fine pitch ball grid array, 5 x 5 mm, 0.50 mm pitch, package mechanical data ref. dimensions millimeters inches (1) min. typ. max. min. typ. max. a 0.460 0.530 0.600 0.0181 0.0209 0.0236 a1 0.050 0.080 0.110 0.0020 0.0031 0.0043 a2 0.400 0.450 0.500 0.0157 0.0177 0.0197 a3 0.080 0.130 0.180 0.0031 0.0051 0.0071 a4 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.170 0.280 0.330 0.0067 0.0110 0.0130 d 4.850 5.000 5.150 0.1909 0.1969 0.2028 d1 3.450 3.500 3.550 0.1358 0.1378 0.1398 e 4.850 5.000 5.150 0.1909 0.1969 0.2028 e1 3.450 3.500 3.550 0.1358 0.1378 0.1398 e - 0.500 - - 0.0197 - f 0.700 0.750 0.800 0.0276 0.0295 0.0315 ddd - - 0.080 - - 0.0031 $b0(b9 6hdwlqjsodqh $ h) ) ' + ?e edoov $ ( 7239,(: %277209,(:   h $ < ; = ggg = ' ( hhh = < ; iii ? ? 0 0 = $ $ $edoo lghqwlilhu $edoo lqgh[duhd $
package characteristics stm32f091xb stm32f091xc 112/129 docid026284 rev 1 figure 40. ufbga64 recommended footprint eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. values in inches are converted from mm and rounded to 4 decimal digits. table 73. ufbga64 ?ultra fine pitch ball grid array, 5 x 5 mm, 0.50 mm pitch, package mechanical data (continued) ref. dimensions millimeters inches (1) min. typ. max. min. typ. max. $b0(b)3b9 %rdug3dg'ldphwhu ? %rdug6roghu0dvn2shqlqj ?
docid026284 rev 1 113/129 stm32f091xb stm32f091xc package characteristics 127 figure 41. lqfp64 ? 10 x 10 mm 64 pin low-profile quad flat package outline 1. drawing is not to scale. ! ! ! 3%!4).' 0,!.% ccc # b # c ! , , + '!5'%0,!.% mm )$%.4)&)#!4)/. 0). $ $ $ e         % % % 7?-%?6 table 74. lqfp64 ? 10 x 10 mm low-profile quad flat package mechanical data symbol millimeters inches (1) min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 - 0.0079 d 11.800 12.000 12.200 0.4646 0.4724 0.4803 d1 9.800 10.000 10.200 0.3858 0.3937 0.4016 d3 - 7.500 - - 0.2953 -
package characteristics stm32f091xb stm32f091xc 114/129 docid026284 rev 1 figure 42. lqfp64 recommended footprint 1. dimensions are in millimeters. e 11.800 12.000 12.200 0.4646 0.4724 0.4803 e1 9.800 10.000 10.200 0.3858 0.3937 0.4016 e3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 k 0 3.5 7 0 3.5 7 1. values in inches are converted from mm and rounded to 4 decimal digits. table 74. lqfp64 ? 10 x 10 mm low-profile quad flat package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max                aib
docid026284 rev 1 115/129 stm32f091xb stm32f091xc package characteristics 127 device marking for lqfp64 the following figure shows the device marking for the lqfp64 package. figure 43. lqfp64 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be contacted prior to any decision to use these engineering samples to run qualification activity. 069 45.' 3$56 3 :88 5hylvlrqfrgh 'dwhfrgh 3urgxfwlghqwlilfdwlrq  3lqlghqwlilhu
package characteristics stm32f091xb stm32f091xc 116/129 docid026284 rev 1 figure 44. wlcsp64 wafer level chip size package mechanical drawing "umpside 3ideview $etail! 7aferbackside !balllocation ! $etail! rotatedby?# eee $ !&8?-% 3eatingplane ! ! b % e e e ' & e table 75. wlcsp64 wafer level chip size package mechanical data symbol millimeters inches (1) min typ max min typ max a 0.520 0.570 0.620 0.0205 0.0224 0.0244 a1 0.170 0.190 0.210 0.0067 0.0075 0.0083 a2 0.350 0.380 0.410 0.0138 0.0150 0.0161 b 0.240 0.270 0.300 0.0094 0.0106 0.0118 d 4.519 4.539 4.559 0.1779 0.1787 0.1795 e 4.891 4.911 4.931 0.1926 0.1933 0.1941 e - 0.400 - - 0.0157 - e1 - 2.800 - - 0.1102 - f - 0.870 - - 0.0343 -
docid026284 rev 1 117/129 stm32f091xb stm32f091xc package characteristics 127 device marking for wlcsp64 the following figure shows the device marking for the wlcsp64 package. figure 45. wlcsp64 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be contacted prior to any decision to use these engineering samples to run qualification activity. g - 1.056 - - 0.0416 - eee - 0.050 - - 0.0020 - 1. values in inches are converted from mm and rounded to four decimal digits. table 75. wlcsp64 wafer level chip size package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max 3fwjtjpodpef 'dwhfrgh 3urgxfw lghqwlilfdwlrq 069 :88 3 45.' 3$: 'rw 
package characteristics stm32f091xb stm32f091xc 118/129 docid026284 rev 1 figure 46. lqfp48 ? 7 x 7 mm, 48 pin low-profile quad flat package outline 1. drawing is not to scale. "?-%?6 0). )$%.4)&)#!4)/. ccc # # $ mm '!5'%0,!.% b ! ! ! c ! , , $ $ % % % e         3%!4).' 0,!.% + table 76. lqfp48 ? 7 x 7 mm low-profile quad flat package mechanical data symbol millimeters inches (1) min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d 8.800 9.000 9.200 0.3465 0.3543 0.3622 d1 6.800 7.000 7.200 0.2677 0.2756 0.2835 d3 - 5.500 - - 0.2165 - e 8.800 9.000 9.200 0.3465 0.3543 0.3622 e1 6.800 7.000 7.200 0.2677 0.2756 0.2835 e3 - 5.500 - - 0.2165 -
docid026284 rev 1 119/129 stm32f091xb stm32f091xc package characteristics 127 figure 47. lqfp48 recommended footprint 1. dimensions are in millimeters. e - 0.500 - - 0.0197 - l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 k 0 3.5 7 0 3.5 7 1. values in inches are converted from mm and rounded to 4 decimal digits. table 76. lqfp48 ? 7 x 7 mm low-profile quad flat package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max                  aid  
package characteristics stm32f091xb stm32f091xc 120/129 docid026284 rev 1 device marking for lqfp48 the following figure shows the device marking for the lqfp48 package. figure 48. lqfp48 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be contacted prior to any decision to use these engineering samples to run qualification activity. 069 :88 45.' $$5 3 5hylvlrqfrgh 'dwhfrgh 3urgxfwlghqwlilfdwlrq  3lqlghqwlilhu
docid026284 rev 1 121/129 stm32f091xb stm32f091xc package characteristics 127 figure 49. ufqfpn48 ? 7 x 7 mm, 0.5 mm pitch, package outline 1. drawing is not to scale. 2. all leads/pads should also be soldered to the pcb to improve the lead/pad solder joint life. 3. there is an exposed die pad on the underside of the ufqfpn package. it is recommended to connect and solder this back-side pad to pcb ground. $%b0(b9 ' 3lqlghqwlilhu odvhupdunlqjduhd (( ' < ' ( ([srvhgsdg duhd =   'hwdlo= 5w\s   / &[? slqfruqhu $ 6hdwlqj sodqh $ e h ggg 'hwdlo< 7
package characteristics stm32f091xb stm32f091xc 122/129 docid026284 rev 1 figure 50. ufqfpn48 recommended footprint 1. dimensions are in millimeters. table 77. ufqfpn48 ? 7 x 7 mm, 0.5 mm pitch, package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 0.500 0.550 0.600 0.0197 0.0217 0.0236 a1 0.000 0.020 0.050 0.0000 0.0008 0.0020 d 6.900 7.000 7.100 0.2717 0.2756 0.2795 e 6.900 7.000 7.100 0.2717 0.2756 0.2795 d2 5.500 5.600 5.700 0.2165 0.2205 0.2244 e2 5.500 5.600 5.700 0.2165 0.2205 0.2244 l 0.300 0.400 0.500 0.0118 0.0157 0.0197 t - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - 7. 3 0 7. 3 0 0.20 0. 3 0 0.55 0.50 5.80 6.20 6.20 5.60 5.60 5.80 0.75 a i15697 48 1 12 1 3 24 25 3 6 3 7
docid026284 rev 1 123/129 stm32f091xb stm32f091xc package characteristics 127 device marking for ufqfpn48 the following figure shows the device marking for the ufqfpn48 package. figure 51. ufqfpn48 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be contacted prior to any decision to use these engineering samples to run qualification activity. 069 :88 3 45.' $$6 5hylvlrqfrgh 'dwhfrgh 3urgxfwlghqwlilfdwlrq  3lqlghqwlilhu
package characteristics stm32f091xb stm32f091xc 124/129 docid026284 rev 1 7.2 thermal characteristics the maximum chip junction temperature (t j max) must never exceed the values given in table 24: general operating conditions . the maximum chip-junction temperature, t j max, in degrees celsius, may be calculated using the following equation: t j max = t a max + (p d max x ja ) where: ? t a max is the maximum temperature in c, ? ja is the package junction-to- thermal resistance, in c/w, ? p d max is the sum of p int max and p i/o max (p d max = p int max + p i/o max), ? p int max is the product of i dd and v dd , expressed in watts. this is the maximum chip internal power. p i/o max represents the maximum power dissipation on output pins where: p i/o max = (v ol i ol ) + ((v dd ? v oh ) i oh ), taking into account the actual v ol / i ol and v oh / i oh of the i/os at low and high level in the application. 7.2.1 reference document jesd51-2 integrated circuits thermal test method environment conditions - natural convection (still air). available from www.jedec.org 7.2.2 selecting the product temperature range when ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in section 8: part numbering . table 78. package thermal characteristics symbol parameter value unit ja thermal resistance junction- ufbga100 - 7 7 mm 55 c/w thermal resistance junction- lqfp100 - 14 14 mm 42 thermal resistance junction- ufbga64 - 5 5 mm / 0.5 mm pitch 65 thermal resistance junction- lqfp64 - 10 10 mm / 0.5 mm pitch 44 thermal resistance junction- wlcsp64 - 0.4 mm pitch 53 thermal resistance junction- lqfp48 - 7 7 mm 54 thermal resistance junction- ufqfpn48 - 7 7 mm 32
docid026284 rev 1 125/129 stm32f091xb stm32f091xc package characteristics 127 each temperature range suffix corresponds to a specific guaranteed temperature at maximum dissipation and to a specific maximum junction temperature. as applications do not commonly use the stm32f0 at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range is best suited to the application. the following examples show how to calculate the temperature range needed for a given application. example 1: high-performance application assuming the following application conditions: maximum temperature t amax = 82 c (measured according to jesd51-2), i ddmax = 50 ma, v dd = 3.5 v, maximum 20 i/os used at the same time in output at low level with i ol = 8 ma, v ol = 0.4 v and maximum 8 i/os used at the same time in output at low level with i ol = 20 ma, v ol = 1.3 v p intmax = 50 ma 3.5 v= 175 mw p iomax = 20 8 ma 0.4 v + 8 20 ma 1.3 v = 272 mw this gives: p intmax = 175 mw and p iomax = 272 mw: p dmax = 175 + 272 = 447 mw using the values obtained in table 78 t jmax is calculated as follows: ? for lqfp64, 45 c/w t jmax = 82 c + (45 c/w 447 mw) = 82 c + 20.115 c = 102.115 c this is within the range of the suffix 6 version parts (?40 < t j < 105 c). in this case, parts must be ordered at least with the temperature range suffix 6 (see section 8: part numbering ). note: with this given p dmax we can find the t amax allowed for a given device temperature range (order code suffix 6 or 7). suffix 6: t amax = t jmax - (45c/w 447 mw) = 105-20.115 = 84.885 c suffix 7: t amax = t jmax - (45c/w 447 mw) = 125-20.115 = 104.885 c example 2: high-temperature application using the same rules, it is possible to address applications that run at high temperatures with a low dissipation, as long as junction temperature t j remains within the specified range. assuming the following application conditions: maximum temperature t amax = 100 c (measured according to jesd51-2), i ddmax = 20 ma, v dd = 3.5 v, maximum 20 i/os used at the same time in output at low level with i ol = 8 ma, v ol = 0.4 v p intmax = 20 ma 3.5 v= 70 mw p iomax = 20 8 ma 0.4 v = 64 mw this gives: p intmax = 70 mw and p iomax = 64 mw: p dmax = 70 + 64 = 134 mw thus: p dmax = 134 mw
package characteristics stm32f091xb stm32f091xc 126/129 docid026284 rev 1 using the values obtained in table 78 t jmax is calculated as follows: ? for lqfp64, 45 c/w t jmax = 100 c + (45 c/w 134 mw) = 100 c + 6.03 c = 106.03 c this is above the range of the suffix 6 version parts (?40 < t j < 105 c). in this case, parts must be ordered at least with the temperature range suffix 7 (see section 8: part numbering ) unless we reduce the power dissipation in order to be able to use suffix 6 parts. refer to figure 52 to select the required temperature range (suffix 6 or 7) according to your temperature or power requirements. figure 52. lqfp64 p d max vs. t a 06y9                 6xiil[ 6xiil[ 3 '  p: 7 $  ?&
docid026284 rev 1 127/129 stm32f091xb stm32f091xc part numbering 127 8 part numbering for a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest st sales office. table 79. ordering information scheme example : stm32 f 091 r c t 6 x device family stm32 = arm-based 32-bit microcontroller product type f = general-purpose sub-family 091= stm32f091xx pin count c = 48 pins r = 64 pins v = 100 pins code size b = 128 kbytes of flash memory c = 256 kbytes of flash memory package h = ufbga t = lqfp u = ufqfpn y = wlcsp temperature range 6 = ?40 to 85 c 7 = ?40 to 105 c options xxx = programmed parts tr = tape and reel
docid026284 rev 1 128/129 stm32f091xb stm32f091xc revision history 128 9 revision history table 80. document revision history date revision changes 30-oct-2014 1 initial release.
docid026284 rev 1 129/129 stm32f091xb stm32f091xc 129 important notice ? please read carefully stmicroelectronics nv and its subsidiaries (?st?) reserve the right to make changes, corrections, enhancements, modifications, and improvements to st products and/or to this document at any time without notice. purchasers should obtain the latest relevant in formation on st products before placing orders. st products are sold pursuant to st?s terms and conditions of sale in place at the time of o rder acknowledgement. purchasers are solely responsible for the choice, selection, and use of st products and st assumes no liability for application assistance or the design of purchasers? products. no license, express or implied, to any intellectual property right is granted by st herein. resale of st products with provisions different from the information set forth herein shall void any warranty granted by st for such product. st and the st logo are trademarks of st. all other product or service names are the property of their respective owners. information in this document supersedes and replaces information previously supplied in any prior versions of this document. ? 2014 stmicroelectronics ? all rights reserved


▲Up To Search▲   

 
Price & Availability of STM32F091CCU6

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X